Tag: maths

Questions Related to maths

The difference between two angles is $19$$\displaystyle ^{o}$ and their sum is $\displaystyle \frac{890}{9}^o$. Find the greater angle.

  1. $63^o$

  2. $35^o$

  3. $27^o$

  4. $59^o$


Correct Option: D
Explanation:
Let the two angles be $a$ and $b$

Then, 
$a  - b = 19$

and, $a + b = \dfrac{890}{9}$

Adding the two equations,

$2a = \dfrac{890 + 19\times 9}{9}$

$2a = \dfrac{1061}{9}$

Thus, $a = \dfrac{1061}{18}$

$a \approx 59^{\circ}$

If two angles of a triangle are acute angles, the third angle:

  1. is less than the sum of the two angles

  2. is an acute angle

  3. is the largest angle of the triangle

  4. may be an obtuse angle


Correct Option: D
Explanation:
For a triangle $ABC$, sum of angles is $180^0$
Two angles are given as acute, $\angle A, \angle B < 90^0$
$\angle A = 90^0 - x$
$\angle B = 90^0 - y$
where, $x,y < 90^0$
$\therefore \angle A + \angle B+ \angle C = 180^0$
$\Rightarrow \angle C = x+y $
$x+y$ can be $>90^0$ or $<90^0$
So, it may be obtuse or acute.
Hence, option D.

An angle which measures $\displaystyle 0^{o}$ is called:

  1. obtuse angle

  2. straight angle

  3. zero angle

  4. right angle


Correct Option: C
Explanation:

An angle which measure $0^0$ is called zero angle.

An angle which measure more than $0^o$ and less than $90^o$ is an acute angle.
An angle which measures $90^o$ is called a right angle.
An angle which measure more than $90^o$ and less than $180^o$ is an obtuse angle.

Hence, the answer is zero angle.

Find the supplement  of the following angle.
$40^{\circ}$

  1. $140$

  2. $40$

  3. $10$

  4. None of these


Correct Option: A
Explanation:

We know that the supplement angle

$=180^0-\theta$

So,
The supplement angle of $40^0$ will be
$=180^0-40^0=140^0$ 

Hence, this is the answer.

The length of the chord of the parabola $y^2 = 4x$ which passes through the vertex and makes $30^o$ angle with x-axis is

  1. $\dfrac{\sqrt{3}}{2}$

  2. $\dfrac{3}{2}$

  3. $8\sqrt{3}$

  4. $\sqrt{3}$


Correct Option: C

If a$\ne $b then the length of common chord of the circles ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {c^2}$ and ${\left( {x - {b^{}}} \right)^2} + {\left( {y - a} \right)^2} = c^2$ is 

  1. $\sqrt {{c^2} - {{\left( {a - b} \right)}^2}} $

  2. $\sqrt {4{c^2} - 2{{\left( {a - b} \right)}^2}} $
  3. $\sqrt {3{c^2} - {{\left( {a - b} \right)}^2}} $

  4. $\sqrt {2{c^2} - {{\left( {a - b} \right)}^2}} $


Correct Option: B
Explanation:

We have,

${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{c}^{2}}$ 
${{S} _{1}}\equiv {{x}^{2}}+{{a}^{2}}-2ax+{{y}^{2}}+{{b}^{2}}-2by-{{c}^{2}}=0$               …….. (1)

 

${{\left( x-b \right)}^{2}}+{{\left( y-a \right)}^{2}}={{c}^{2}}$

${{S} _{2}}\equiv {{x}^{2}}+{{b}^{2}}-2bx+{{y}^{2}}+{{a}^{2}}-2ay-{{c}^{2}}=0$                        ……… (2)

 

Since, $a\ne b$

 

Centre of the circle ${{S} _{1}}=\left( a,b \right)$ and radius ${{r} _{1}}=c$.

 

We know that the equation of common chord is ${{S} _{1}}-{{S} _{2}}=0$

 

So, the equation is

$\left( b-a \right)x+\left( a-b \right)y=0$             …….. (3)

 

We know that the length of common chord is

$=2\sqrt{{{r} _{1}}^{2}-{{d} _{1}}^{2}}$                      ………. (4)

Where ${{r} _{1}}=$ radius and ${{d} _{1}}$ is the length of perpendicular drawn from the centre to the chord.

 

So,

${{d} _{1}}=\left| \dfrac{\left( b-a \right)a+\left( a-b \right)b}{\sqrt{{{\left( b-a \right)}^{2}}+{{\left( a-b \right)}^{2}}}} \right|$

$ {{d} _{1}}=\left| \dfrac{ab-{{a}^{2}}+ab-{{b}^{2}}}{\sqrt{{{\left( a-b \right)}^{2}}+{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{2ab-{{a}^{2}}-{{b}^{2}}}{\sqrt{2{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{-{{\left( a-b \right)}^{2}}}{\sqrt{2{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{-\left( a-b \right)}{\sqrt{2}} \right| $

$ {{d} _{1}}=\dfrac{\left( a-b \right)}{\sqrt{2}} $

 

From equation (4),

The length of common chord $ =2\sqrt{{{c}^{2}}-{{\left( \dfrac{a-b}{\sqrt{2}} \right)}^{2}}} $

$ =2\sqrt{{{c}^{2}}-{{\dfrac{\left( a-b \right)}{2}}^{2}}} $

$ =2\sqrt{{{\dfrac{2{{c}^{2}}-\left( a-b \right)}{2}}^{2}}} $

$ =\sqrt{{{\dfrac{8{{c}^{2}}-4\left( a-b \right)}{2}}^{2}}} $

$ =\sqrt{4{{c}^{2}}-2{{\left( a-b \right)}^{2}}} $

 

Hence, this is the answer.

Length of chord of parabola ${y}^{2}=4ax$ whose equation is $y-\sqrt {2}x+4\sqrt {2}a=0$

  1. $2\sqrt {11}a$

  2. $4\sqrt {2}a$

  3. $8\sqrt {2}a$

  4. $6\sqrt {3}a$


Correct Option: A

If a$\ne $b then the length of common chord of the circles ${\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} = {c^2}$ and ${\left( {x - {b^{}}} \right)^2} + {\left( {y - a} \right)^2} = c^2$ is 

  1. $\sqrt {{c^2} - {{\left( {a - b} \right)}^2}} $

  2. $\sqrt {3{c^2} - {{\left( {a - b} \right)}^2}} $
  3. $\sqrt {4{c^2} - 2{{\left( {a - b} \right)}^2}} $
  4. $\sqrt {2{c^2} - {{\left( {a - b} \right)}^2}} $


Correct Option: C
Explanation:

We have,

${{\left( x-a \right)}^{2}}+{{\left( y-b \right)}^{2}}={{c}^{2}}$ 
${{S} _{1}}\equiv {{x}^{2}}+{{a}^{2}}-2ax+{{y}^{2}}+{{b}^{2}}-2by-{{c}^{2}}=0$               …….. (1)

 

${{\left( x-b \right)}^{2}}+{{\left( y-a \right)}^{2}}={{c}^{2}}$

${{S} _{2}}\equiv {{x}^{2}}+{{b}^{2}}-2bx+{{y}^{2}}+{{a}^{2}}-2ay-{{c}^{2}}=0$                        ……… (2)

 

Since, $a\ne b$

 

Centre of the circle ${{S} _{1}}=\left( a,b \right)$ and radius ${{r} _{1}}=c$.

 

We know that the equation of common chord is ${{S} _{1}}-{{S} _{2}}=0$

 

So, the equation is

$\left( b-a \right)x+\left( a-b \right)y=0$             …….. (3)

 

We know that the length of common chord is

$=2\sqrt{{{r} _{1}}^{2}-{{d} _{1}}^{2}}$                      ………. (4)

Where ${{r} _{1}}=$ radius and ${{d} _{1}}$ is the length of perpendicular drawn from the centre to the chord.

 

So,

${{d} _{1}}=\left| \dfrac{\left( b-a \right)a+\left( a-b \right)b}{\sqrt{{{\left( b-a \right)}^{2}}+{{\left( a-b \right)}^{2}}}} \right|$

$ {{d} _{1}}=\left| \dfrac{ab-{{a}^{2}}+ab-{{b}^{2}}}{\sqrt{{{\left( a-b \right)}^{2}}+{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{2ab-{{a}^{2}}-{{b}^{2}}}{\sqrt{2{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{-{{\left( a-b \right)}^{2}}}{\sqrt{2{{\left( a-b \right)}^{2}}}} \right| $

$ {{d} _{1}}=\left| \dfrac{-\left( a-b \right)}{\sqrt{2}} \right| $

$ {{d} _{1}}=\dfrac{\left( a-b \right)}{\sqrt{2}} $

 

From equation (4),

The length of common chord $ =2\sqrt{{{c}^{2}}-{{\left( \dfrac{a-b}{\sqrt{2}} \right)}^{2}}} $

$ =2\sqrt{{{c}^{2}}-{{\dfrac{\left( a-b \right)}{2}}^{2}}} $

$ =2\sqrt{{{\dfrac{2{{c}^{2}}-\left( a-b \right)}{2}}^{2}}} $

$ =\sqrt{{{\dfrac{8{{c}^{2}}-4\left( a-b \right)}{2}}^{2}}} $

$ =\sqrt{4{{c}^{2}}-2{{\left( a-b \right)}^{2}}} $

 

Hence, this is the answer.

The length of the chord $y = x - 2$ intercepted by the parabola ${ y }^{ 2 }=4(x-1)$ is 

  1. $4$

  2. $\dfrac { 16 }{ 3 } $

  3. $\dfrac { 3 }{ 16 } $

  4. $\dfrac { 1 }{ 4 } $


Correct Option: A

The length of normal chord to the parabola $y^{2} = 4x$ which subtends a right angle at the vertex is

  1. $6\sqrt {3}$

  2. $6\sqrt {2}$

  3. $7\sqrt {2}$

  4. $7\sqrt {3}$


Correct Option: A
Explanation:

A chord is a line segment that passes through any two points on the parabola. A normal chord is a chord that is perpendicular to a tangent of the parabola at the point of intersection of the chord with the parabola. 


Let $y=mx+c$   is the tangent of parabola.


As given parabola is $y^2=4x$

So any point on the parabola is $(t^2,2t)$

As $y=mx+\dfrac{a}{m}$ , is the tangent to the parabola $y^2=4ax$

then the tangent equation to this given parabola is $y=mx+\dfrac{1}{m}$

Let the tangent passes through point $P(t _1^{2},2t _1)$

On substituting P in parabola equation we get $m=\dfrac{1}{t _1}$

So the slope of the normal is $-t _1$

Let the chord joins $P(t _1^2,2t _1)$ and $Q(t _2^2,2t _2)$ 

On solving we will get slope of line PQ as $\dfrac{2}{t _1+t _2}$

So , $\dfrac{2}{{t _1}+{t _2}}= \dfrac{1}{t _1}$

$\Rightarrow t _1^{2}+{t _1}{t _2}=-2$

As from properties of a normal chord which subtends a right angle at the vertex, ${t _1}{t _2}=-4$

On solving above two equations we get $ t _1=\sqrt{2} , t _2=-2\sqrt{2} $

Hence the points are $P(2,2\sqrt{2})$ and $Q(8,-4\sqrt{2}) $

By applying distance formula we get the distance between P and Q as

$\Rightarrow PQ=\sqrt{(8-2)^2+(-4\sqrt{2}-2\sqrt{2})^2}$

$\Rightarrow PQ=\sqrt{108}=6\sqrt{3} units $