Tag: maths

Questions Related to maths

Which is the greatest angle in the given set: $\dfrac{1}{3}$ of complete angle, $\dfrac{1}{3}$ of straight angle or a right angle?

  1. $\dfrac{1}{3}$ of complete angle

  2. $\dfrac{1}{3}$ of straight angle

  3. A right angle

  4. All are equal


Correct Option: A
Explanation:

Complete angle $=360^{\circ}$

$\dfrac{1}{3}$ complete angle $=\dfrac { 1 }{ 3 } \times { 360 }^{ \circ  }={ 120 }^{ \circ  }$
Right angle $=90^{\circ}$
$\dfrac{1}{3}$ right angle $=\dfrac { 1 }{ 3 } \times { 90 }^{ \circ  }={ 30 }^{ \circ  }$
So $\dfrac{1}{3}$ complete angle is greater.

Rank the following angles in descending order. 
1. Straight angle
2. Reflex angle
3. Right angle 

  1. $2$, $1$, $3$

  2. $3$, $2$, $1$

  3. $2$, $3$, $1$

  4. $3$, $1$, $2$


Correct Option: A
Explanation:
  1. Right angle $=90^{\circ}$

    2. Straight angle $=180^{\circ}$

    3. Reflex angle lies between $180^{\circ}$ and $360^{\circ}$

    So the descending order of angles is
    $2>1>3$

In a triangle, the angles are in ratio $1: 3: 2$. Find the difference between the greatest and smallest angle of the triangle.

  1. $10^o$

  2. $70^o$

  3. $60^o$

  4. $20^o$


Correct Option: C
Explanation:

Le the angles be $x,3x$ and $2x$

Using angle sum property of triangle 
$x+3x+2x={ 180 }^{ \circ  }\ 6x={ 180 }^{ \circ  }\ \Rightarrow x={ 30 }^{ \circ  }$
So the angles are 
$x={ 30 }^{ \circ  }\ 3x=3\times { 30 }^{ \circ  }={ 90 }^{ \circ  }\ 2x=2\times { 30 }^{ \circ  }={ 60 }^{ \circ  }$
Difference between largest and smallest $={ 90 }^{ \circ  }-{ 30 }^{ \circ  }={ 60 }^{ \circ  }$

If the difference of two supplementary angles is $40^{\circ}$, then the measurement of the greater angle is

  1. $65^{\circ}$

  2. $110^{\circ}$

  3. $130^{\circ}$

  4. $220^{\circ}$


Correct Option: B
Explanation:

Let the two supplementary angles are $x^{\circ}$ and
$180^{\circ} - x$
By hypothesis, $x - (180^{\circ} - x) = 40^{\circ}$
or $2x - 180^{\circ} = 40^{\circ}$
or  $2x = 220^{\circ}$
or    $x = 110^{\circ}$

In a $\Delta$ PQR, if $3\sin P+4\cos Q=6$ and $4 \sin Q+3\cos P=1$, then the angle $R$ is equal to :

  1. $\dfrac{3\pi}{4}$

  2. $\dfrac{5\pi}{6}$

  3. $\dfrac{\pi}{6}$

  4. $\dfrac{\pi}{4}$


Correct Option: B
Explanation:

Given trignometric equations are:

$3 \sin{P} +4 \cos{Q} =6$ -------(1)
$4 \sin{Q} +3 \cos{P} =1$ -------(2)

Squaring both equations (1) and (2) and adding them, we get
$\Rightarrow 9\left( \sin ^{ 2 }{ P } +\cos ^{ 2 }{ P }  \right) +16\left( \sin ^{ 2 }{ Q } +\cos ^{ 2 }{ Q }  \right) +24\left( \sin { Q } \cos { P } +\cos { Q } \sin { P }  \right) =36+1$

$ \Rightarrow 9+16+24\sin { \left( P+Q \right)  } =37$

$ \therefore \sin { \left( P+Q \right)  } =\cfrac { 37-25 }{ 24 } =\cfrac { 12 }{ 24 } =\cfrac { 1 }{ 2 } $

$\therefore P+Q=30°$

Hence, angle $R=180°-30°=150°=\cfrac { 5\pi  }{ 6 } $radian

In triangle $ABC,$ if $\dfrac { 1 }{ a+c } +\dfrac { 1 }{ b+c } =\dfrac { 3 }{ a+b+c } ,$ then $\angle c$  is equal to:

  1. $30^{\circ}$

  2. $45^{\circ}$

  3. $60^{\circ}$

  4. $90^{\circ}$


Correct Option: C
Explanation:

Given: $\cfrac { 1 }{ a+c } +\cfrac { 1 }{ b+c } =\cfrac { 3 }{ a+b+c } $


$\Rightarrow \quad \cfrac { a+b+2c }{ (a+c)(b+c) } =\cfrac { 3 }{ a+b+c } $

$ \therefore (a+b+2c)(a+b+c)=3(a+c)(b+c)$

$\Rightarrow$ $ { a }^{ 2 }+ab+ac+ab+{ b }^{ 2 }+bc+2ac+2bc+2{ c }^{ 2 }$$ =3(ab+ac+bc+{ c }^{ 2 })$

$ \therefore { a }^{ 2 }+2ab+3ac+{ b }^{ 2 }+3bc+2{ c }^{ 2 }$$ =3ab+3ac+3bc+3{ c }^{ 2 }$

$\Rightarrow$ ${ a }^{ 2 }+{ b }^{ 2 }=ab+{ c }^{ 2 }$

$\Rightarrow$ $ { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 }=ab$

$\Rightarrow$ $ \cfrac { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ ab } =1$

$\Rightarrow \cfrac { { a }^{ 2 }+{ b }^{ 2 }-{ c }^{ 2 } }{ 2ab } =\cfrac { 1 }{ 2 } $

$\cos { C } =\dfrac{1}{2}\Rightarrow \angle C={ 60 }^{\circ}$

In $\Delta ABC\,,\,if\,\,A\,\,:\,\,B\,:\,\,C\, = \,1\,\,:\,\,5\,\,:\,\,6\,\,then$ find the value of $\sin A: \sin B: \sin C$

  1. $\left( {\sqrt 3 \, - \,1} \right)\,:\,2\sqrt 2 \,:\,\left( {\sqrt 3 \, + \,1} \right)$

  2. $2\sqrt 2 \,:\,\left( {\sqrt 3 \, - \,1} \right)\,:\,\left( {\sqrt 3 \, + \,1} \right)$

  3. $ \,\left( {\sqrt 3 \, - \,1} \right)\,:\,\left( {\sqrt 3 \, + \,1} \right)\,:\,2\sqrt 2 $

  4. $ \,\left( {\sqrt 3 \, - \,1} \right)\,:\,\sqrt 3 :\,\sqrt 2 $


Correct Option: C
Explanation:

Given that $ A:B:C = 1:5:6 $


We know that the sum of angles in a triangle is $180^0$

Let us first find each angle.

Total no.of parts= $1+5+6= 12$

$A$= $ \dfrac{1}{12} $ ($180^0$) =$15^0$

$B$= $ \dfrac{5}{12} $ ($180^0$) =$75^0$

$C$= $ \dfrac{6}{12} $ ($180^0$) =$90^0$

Hence, $ \sin A: \sin B: \sin C$ = $\sin 15^o$$:\sin 75^o$$:\sin 90^o$

$=\dfrac {\sqrt{3}-1} {2\sqrt 2} : \ \dfrac{\sqrt3+1}{2\sqrt2 } :1$ 

$= ({\sqrt{3}-1})  : ({\sqrt3+1} ): ({2\sqrt2 }) $ 

In $\Delta ABC$ and $\Delta DEF$, we have $\dfrac {AB}{DE}=\dfrac {BC}{FD}$. Triangles ABC and DEF will be similar if :

  1. $\angle A = \angle D$

  2. $\angle A = \angle F$

  3. $\angle B = \angle E$

  4. $\angle B = \angle D$


Correct Option: D

Using ruler and compasses only, construct a triangle POR such that $\angle P = 120^{\circ}$, PO = 5 cm PR = 6 cm.In the same figure, find a point which is equidistant from its sides. Name this point With this point as centre draw a circle touching all the sides of the triangle.

  1. Circumcentre

  2. Incentre

  3. Mid point

  4. Data insufficient


Correct Option: B
Explanation:

(I) We draw a triangle POR with $\quad \angle RPO={ 120 }^{ O }.\quad $

(II) OI & OR are the angular bisectors of $\quad \angle RPO\quad & \angle ROP\quad $
The bisectors intersect at I.
(i) IM & IN  are drawn perpendiculars from i to PR & PO respectively. 
 (iii) The circle which touches the sides of the triangle POR.
has the radius  IM=IN.
Justification-
Between $\quad \Delta IPM\quad & \quad \Delta IPN,\ \angle IMP={ 90 }^{ o }=\angle INP,\ \angle IPM=\angle IPN\quad $
So the third angles  $\quad \angle PIN=\angle PIM\quad $
Also the side IP is common.
So, by ASA rule, $\quad \Delta IPM\equiv \Delta IPN.\quad $  
i.e IM=IN.
Similarly, by considering the triangles INO & ISO it can be shown that
IN=IS.
So IM=IN=IS.
i.e the circle with centre I touches the sides of the given triangle.
So  I is the INCENTRE of the triangle POR.
Ans- Option B.

The measure of the trisected angle of $\displaystyle 162^{\circ}$ is:

  1. $\displaystyle 54^{\circ}$

  2. $\displaystyle 81^{\circ}$

  3. $\displaystyle 162^{\circ}$

  4. $\displaystyle 90^{\circ}$


Correct Option: A
Explanation:

Trisected angle $\displaystyle =\frac{162^{\circ}}{3}=54^{\circ}$