Tag: maths
Questions Related to maths
If $\vec {a}\times \vec {b}=\vec {c}\times \vec {d},\vec {a}\times \vec {c}=\vec {b}\times \vec {d}$, then
If $\vec {a}$ and $\vec {b}$ are not perpendicular to each other and $\vec {r}\times\vec {a}=\vec {b}\times\vec {a},\ \vec {r}.\vec {c}=0$, then $\vec {r}$ is equal to
If $a$ and $b$ are two unit vectors inclined at an angle $\dfrac { \pi }{ 3 }$, then $\left{ a\times \left( b+a\times b \right) \right} \cdot b$ is equal to
Let $\vec{\lambda }=\vec{a}\times \left ( \vec{b}+\vec{c} \right )$, $\vec{\mu }=\vec{b}\times \left ( \vec{c}+\vec{a} \right )$ and $\vec{\nu }=\vec{c}\times \left ( \vec{a}+\vec{b} \right )$, then
Let $\vec{r}\times \vec{a}=\vec{b}\times \vec{a}$ and $\vec{r}.\vec{c}=0$, where $\vec{a}\vec{b}\neq 0$, then $\vec{r}$ is equal to
If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are any three vectors in space then $\left ( \overrightarrow{c}+\overrightarrow{b} \right )\times \left ( \overrightarrow{c}+\overrightarrow{a} \right ).\left ( \overrightarrow{c}+\overrightarrow{b}+\overrightarrow{a} \right )$ is equal to
LCM of numbers 1, 2, 3 is equal to their
L.C.M. of two co-prime numbers is their
What are the three common multiples of $18$ and $6$?
Bhushan counted to $60$ using multiples of $6.$ Which statement is true about multiples of $6?$