Tag: maths
Questions Related to maths
$\displaystyle a\times \left ( b+c \right )+b\times \left ( c+a \right )+c\times \left ( a+b \right )$ is equal to
Let $\displaystyle a=i+j$ and $\displaystyle b=2i-k,$ the point of intersection of the lines $\displaystyle r\times a=b\times a $ and $\displaystyle r\times b=a\times b $ is
If $\overline{a},\overline{b},\overline{c}$ are three non-zero vectors and $\overline{a}\neq\overline{b}$, $\overline{a}\times\overline{c}=\overline{b}\times\overline{c}$, then
If $a +2b +3c = 0$, then $a \times b + b\times c + c\times a = ka\times b,$
Where $k$ is equal to ?
If $\left| \vec { a } \right| =1,\ \left| \vec { b } \right| =2,\ (\vec { a },\vec { b })=\dfrac{2\pi}{3}$ then $\left{(\vec { a } +3\vec { b } )\times \left( 3\vec { a } -\vec { b } \right) \right}^{2}=$
If $\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i + \hat j,\,\,\hat c = \hat i$ and $\left( {\vec a \times \vec b} \right) \times \vec c = \lambda \vec a \times \mu \vec b$ then $\lambda + \mu $
Let $\vec{a} = \widehat{i} + \widehat{j}$, $\vec{b} = 2 \widehat{i} - \widehat{k}$, then vector $\vec{r}$ satisfying the equations $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ is
If the vector $\bar{c}, \bar{a} = x\bar{i}+y\bar{j}+ z\bar{k}, \bar{b}= \bar{j}$ are such that $\bar{a}, \bar{c}, \bar{b}$ from R.H.S then $\bar{c}$ =
If $a,b,c$ are unit vectors, then the maximum value of $|a+2b|^{2}+|b+3c|^{2}+|c+4a|^{2}$ is
If $\displaystyle \bar{a}+p\bar{b}+q\bar{c}=0 $ then