Tag: maths
Questions Related to maths
If the vector $a, b$ and $c$ form the sides $BC, CA $ and $AB $ and equal magnitute respectively of a triangle $ABC,$ then
If $\displaystyle a\cdot b=a\cdot c$ and $\displaystyle a\times b=a\times c,$ then
Let $\displaystyle \vec{a}=\hat{i}+\hat{j}$ & $\displaystyle \vec{b}=2\hat{i}+\hat{j}$ The point of intersection of the lines $\displaystyle \vec{r}\times \vec{a}=\vec{b}\times \vec{a}& \vec{r}\times \vec{b}=\vec{a}\times \vec{b}$ is
Let $\displaystyle \vec{A}=2\vec{i}+\vec{k},\,\vec{B}=\vec{i}+\vec{j}+\vec{k},$ and $\displaystyle \vec{C}=4\vec{i}-3\vec{j}+7\vec{k}$ Determine a vector $\displaystyle \vec{R}$satisfying $\displaystyle \vec{R}\times \vec{B}=\vec{C}\times \vec{B}$ and $\displaystyle \vec{R}.\vec{A}=0$
Unit vector $\vec r$ which satisfies $\vec r \times \vec b = \vec r \times \vec c$ where $\vec b = \widehat i + 2 \widehat j + \widehat k $ & $ \vec c = 3 \widehat i + 2 \widehat k $, is
Let $\vec a = \widehat i + \widehat j$ and $\vec b = 2 \widehat i - \widehat k$, then the point of intersection of lines $\vec r \times \vec a = \vec b \times \vec a$ and $\vec r \times \vec b = \vec a \times \vec b$ is
If $\overline{a}\times\overline{b}=\overline{b}\times\overline{c}$, then
If three vectors $\overline{a},\overline{b},\ \overline{c}$ are such that $\overline{a}\neq 0$, $\overline{a}\times\overline{b}=2\overline{a}\times\overline{c},\ |\overline{a}|=|\overline{c}|=1,\ |\overline{b}|=4$ and the angle between $|\overline{b}|$ and $|\overline{c}|$ is $\displaystyle \cos^{-1}\frac{1}{4}$, then $\overline{b}-2\overline{c}=\lambda\overline{a}$ where $\lambda$ is equal to
If $\vec{a}\times\vec{b}=\vec{c}\times\vec{d}$ and $\vec{a}\times\vec{c}=\vec{b}\times\vec{d}$, then
If $\vec {a},\vec {b},\ \vec {c}$ are non-zero non-collinear vectors such that $\vec {a}\times\vec {b}=\vec {b}\times\vec {c}=\vec {c}\times\vec {a}$ , then $\vec {a}+\vec {b}+\vec {c}=$