Tag: maths

Questions Related to maths

Simplify $| |-5| - 16 + |-1| | $.

  1. $-12$

  2. $-10$

  3. $10$

  4. $12$

  5. $22$


Correct Option: C
Explanation:

Rule: $|x|=x$ when $x$ is positive integer and $|x|=-x$ when $x$ is negative integer. So

$||-5|-16+|-1||$
$\Rightarrow |-(-5)-16+[-(-1)]|$
$\Rightarrow |+5-16+1|$
$\Rightarrow |-10|=10$

The value of $|7|+|5|-|7|-|1-3|$= ___________.

  1. $0$

  2. $1$

  3. $2$

  4. $3$


Correct Option: D
Explanation:

$|7|+|5|-|7|-|1-3|$

$|7|+|5|-|7|-|-2|$
$=7+5-7-2$  ............  $\because|-2|=2$
$=3$
Hence the correct answer is option D.

If $x$ be real and positive, then the value of
$y = x + \frac{1}{x}$ satisfies

  1. $0 < y \leq 0.5$

  2. $0.5 < y \leq 1$

  3. $1 < y < 2$

  4. $y \geq 2$


Correct Option: D
Explanation:

$ Given\quad y\quad =\quad x+\frac { 1 }{ x } \ \quad =(\sqrt { x } )^{ 2 }+\left( \frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\ \quad =\left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\sqrt { x } \frac { 1 }{ \sqrt { x }  } \ \quad =\left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\ First\quad term\quad is\quad a\quad squared\quad term\quad so\quad it\quad is\quad positive.\ \therefore \quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\quad >2 \quad when\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\quad has\quad a\quad finite\quad value\ and\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }+2\quad =\quad 2\quad \quad  when\quad \left( \sqrt { x } -\frac { 1 }{ \sqrt { x }  }  \right) ^{ 2 }\quad is\quad zero.\ \therefore \quad y\ge 2\quad \quad (Ans) $

The largest number of the three consecutive number is $(x+2)$, then the smallest number is

  1. x+2

  2. x+1

  3. x

  4. x-1


Correct Option: C

The absolute value of $\dfrac { \displaystyle\int _{ 0 }^{ \pi /2 }{ \left( x\cos { x+1 }  \right) { e }^{ \sin { x }  }dx }  }{ \displaystyle\int _{ 0 }^{ \pi /2 }{ \left( x\sin { x-1 }  \right) { e }^{ \cos { x }  }dx }  } $ is equal to 

  1. $e$

  2. $\pi e$

  3. $\dfrac{e}{2}$

  4. $\dfrac{\pi}{e}$


Correct Option: A
Explanation:

$\begin{array}{l} We\, have \ I=\dfrac { { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \sin  x } }\left( { x\cos  x+1 } \right) dx }  } }{ { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \cos  x } }\left( { x\sin  x-1 } \right) dx }  } }  \ =\dfrac { { \left[ { x{ e^{ \sin  x } } } \right] _{ 0 }^{ \frac { \pi  }{ 2 }  } } }{ { \int _{ 0 }^{ \frac { \pi  }{ 2 }  }{ { e^{ \cos  x } }\left( { 1-x\sin  x } \right) dx }  } } =\dfrac { { \frac { \pi  }{ 2 } \times e } }{ { \left[ { { e^{ \cos  x } }x } \right] _{ \frac { \pi  }{ 2 }  }^{ 0 } } }  \ =\dfrac { { \frac { \pi  }{ 2 } e } }{ { 0-\frac { \pi  }{ 2 }  } } =-e \ Hence,\, absolute\, value\, =e \ Hence,\, option\, A\; is\, the\, correct\, answer. \end{array}$

Absolute value of $+16$ is:

  1. $-16$

  2. $0$

  3. $+16$

  4. $16$


Correct Option: D
Explanation:

Absolute value is always a positive value. 

So absolute value of $+16$ is $16$. 
Because a simple digit always shows the positive value and there is no need to show the positive sign over there.
Hence, the answer is $16$.

The value of x on simplifying $x -2 |x|=-3$ is

  1. -1 or 3

  2. 1 or -3

  3. -1 or -3

  4. 1, 3


Correct Option: A
Explanation:

$x-2|x| = -3$

There two cases possible either $x$ is positive or$x$ is negative
We have to solve both cases
Firstly taking x as positive
$x-2x=-3$
$x=3$
Now taking $x$ as negative
$x-2(-x)=-3$
$3x=-3$
$x=-1$
So we get two values of $x$ that is -1 and 3
 So correct answer will be option A

Simplification of $-|-48|$ is

  1. $48$

  2. $-48$

  3. $0$

  4. $-47$


Correct Option: B
Explanation:
Since $|-x| = x$
$-|-48| = -(48) = -48$
So, option $B$ is correct.

If $a$ and $b$ are any real numbers, then which of the following expressions is always positive?

  1. $\left| a \right| $

  2. $\left| a+b \right| $

  3. $\left| a-b \right| +1/2$

  4. ${ a }^{ 2 }+{ b }^{ 2 }$

  5. ${ \left( a+b \right) }^{ 2 }$


Correct Option: C
Explanation:

Lets check each option one by one.

A. |a| cab be 0 if a=0 
B. |a+b| can be 0 if a+b=0
C. |a-b|+ 1/2  will always positive because |a+b| is either 0 or positive 
D. ${a}^{2}+{b}^{2}$ can be 0 if both $a$ and $b$ becomes 0
E ${(a+b)}^{2}$ can equal to 0 if $a+b$ = 0
So correct answer will be option C 

A square field is 40m long. The perimeter of the square field is (in cm)

  1. $14000 \, cm$

  2. $16000 \, cm$

  3. $12000 \, cm$

  4. $8000 \, cm$


Correct Option: B