Tag: maths

Questions Related to maths

The absolute value of $| -3 \times 6 | $ is 

  1. $18$

  2. $-18$

  3. $0$

  4. $1$


Correct Option: A
Explanation:

$-3 \times 6 = -18$
Absolute value of a number means the distance of a number 
on the number line from $0$, without considering which 
direction from $0$ the number lies.
$\therefore$ absolute value i.e $|-18|= 18$.

So, option $A$ is correct.

The value of |3-10| is

  1. $7$

  2. $-7$

  3. $3+10$

  4. $3-10$


Correct Option: A
Explanation:
$\left | x \right |  $   is a absolute value function

Its value is always greater than $0$ or equal to $0$

for example $\left | -1 \right |  =1$ 
and                 $\left | 1 \right | =1 $


given expression as per the question

$\left |3-10 \right |    $

$=\left | -7 \right |   $

$=7$

So option $A$ is correct

The value of $|-5-6|\times |4 + 3|$ on simplification is

  1. $-7$

  2. $7$

  3. $77$

  4. $-77$


Correct Option: C
Explanation:
$\left | x \right |  $   is a absolute valye function

Its value is always greater than $0$ or equal to $0$.

for example $\left | -1 \right |  =1$ 
and                 $\left | 1 \right | =1 $

given expression as per the question

$\left | -5-6 \right | \times \left | 4+3 \right |   $

$=\left | -11 \right | \times \left | 7 \right |   $

$=11 \times 7$

$=77$

The absolute value of $ | 10 \div (-2) |$ is

  1. $-5$

  2. $2$

  3. $4$

  4. $5$


Correct Option: D
Explanation:

$| 10 \div (-2)|$ = $|-5|$
The absolute value i.e $|-5| = 5$.

Therefore, option $D$ is correct.

The absolute value of $ | - 8 + 3 |$ is

  1. $-5$

  2. $2$

  3. $5$

  4. $-2$


Correct Option: C
Explanation:

$ | -8 + 3| = | -5 | $
$\therefore$ absolute value i.e $|-5| = 5$.

Therefore, option C is correct.

The absolute value of $ | 8- 3 |$ is

  1. $5$

  2. $-5$

  3. $2$

  4. $-2$


Correct Option: A
Explanation:

$ | 8 - 3| = | 5 | $
$\therefore$ absolute value i.e $|5| = 5$.
Therefore, option $A$ is correct.

Select the correct inequality between the two numbers $:$

$|-10| $ $....$  $|28|$

  1. $<$

  2. $>$

  3. $=$

  4. can't say


Correct Option: A
Explanation:

$|-10| = 10$ and $|28| = 28$

$\therefore 10 < 28$
So, option $A$ is correct.

Simplification of $(-|-16|)^2$ is

  1. $216$

  2. $400$

  3. $-160$

  4. $256$


Correct Option: D
Explanation:
Since $|-x| = x$
$(-|-16|)^2 = (-(16))^2 = (-16)^2 = 256$

So, option $D$ is correct.

Simplification of $|0 \times (-9)|$ is

  1. $0$

  2. $|-9|$

  3. $9$

  4. All of the above


Correct Option: A
Explanation:

$|0(-9)| = |0| = 0$

Product of any number with $0$ is $0.$ 
So, option $A$ is correct.

Simplification of $-|-4|^2$ is

  1. $2$

  2. $-2$

  3. $-16$

  4. $16$


Correct Option: C
Explanation:
Since $|-x| = x$
$-|-4|^2 = -(4)^2 = -16$
So, option $C$ is correct.