Tag: physics

Questions Related to physics

When a ceiling fan is switched off, its angular velocity reduces by $50$% while it makes $36$ rotations. How many more rotations will it make before coming to rest? (Assume uniforms angular retardation)

  1. $48$

  2. $36$

  3. $12$

  4. $18$


Correct Option: C
Explanation:

$\begin{array}{l} You\, \, have\, \, to\, \, use\, \, the\, \, equation, \ \; { { { \omega  } }^{ { 2 } } }\; ={ { { \omega  } } _{ { 0 } } }^{ { 2 } }\; +{ { 2\alpha \theta  } }\; \, \, for\, \, finding\, \, the\, \, angular\, \, acceleration\; \, \alpha \, \, and \ hence\, \, the\, \, number\, \, of\, \, further\, \, rotations. \ Note\, \, that\, \, this\, \, equation\, \, is\, \, the\, \, rotational\, \, analogue\, \, of\, \, the\, equation \ { v^{ 2 } }\; ={ v _{ 0 } }^{ 2 }+2as{ {  } }(or,\; { v^{ 2 } }\; ={ u^{ 2 } }\; +2as)\, \, in\, \, linear\, \, motion. \ Since\, \, the\, \, angular\, \, velocity\, \, has\, \, reduce\, \, to\, \, half\, \, of\, \, the\, \, initial\, \, value\, \, { \omega _{ 0 } }\, \, after\, \, 36\, \, rotations,\, \, we\, \, have \ { \left( { { \omega _{ 0\;  } }/2 } \right) _{ \;  } }^{ 2 }={ \omega _{ 0 } }^{ 2 }+2\alpha \times 36\, \, from\, \, which\, \; \alpha =--\; { \omega _{ 0 } }^{ 2 }/96 \ \left[ { We\, \, have\, \, expressed\, \, the\, \, angular\, \, displacement\, \, \theta \, \, in\, \, rotations\, \, itself\, \, for\, \, convenience } \right]  \ If\, \, the\, \, additional\, \, number\, \, of\, \, rotations\, \, is\, \, x,\, \, we\, \, have \ 0={ \left( { { \omega _{ 0\;  } }/2 } \right) _{ \;  } }^{ 2 }\; +\; 2\alpha x\; =\; { \left( { { \omega _{ 0\;  } }/2 } \right) _{ \;  } }^{ 2 }\; +\; 2\times (--\; { \omega _{ 0 } }^{ 2 }/96)x \ This\, \, gives, \ x\; =12 \end{array}$

Hence,
option $(C)$ is correct answer.

The minimum value of ${ \omega  } _{ 0 }$ below which the ring will drop down is 

  1. $\sqrt { \dfrac { g }{ 2\mu (R-r) } } $

  2. $\sqrt { \dfrac { 3g }{ 2\mu (R-r) } } $

  3. $\sqrt { \dfrac { g }{ \mu (R-r) } } $

  4. $\sqrt { \dfrac { 2g }{ \mu (R-r) } } $


Correct Option: C

a flywheel is in the form of a solid circular wheel of mass 72 kg and radius 50cm and it makes 70 r.p.m. then the energy of revolution is:

  1. 245534 J

  2. 24000 J

  3. 4795000J

  4. 4791600 J


Correct Option: D
Explanation:

$K.E=\cfrac{1}{2}mv^2\rightarrow(1)\v=r\omega$

Put in $(1)$
$K.E=\cfrac{1}{2}mr^2\omega^2$
Given data,
$m=72kg\r=50cm\ \omega=70rev/min$
$1rev=2\pi rad\1min=60sec\ \omega=\cfrac{70\times2\pi}{60}=2.33\times3.14\ \omega=7.3rad/sec$
So, $K.E=\cfrac{1}{2}mr^2\omega^2\Rightarrow\cfrac{1}{2}\times72\times50\times50\times\cfrac{7.3}{10}\times\cfrac{7.3}{10}\ K.E=4791600J$

Two discs having masses in the ratio $1:2$ and radii in the ratio $1:8$ roll down without slipping one by one from an inclined plane of height $h$. The ratio of their linear velocities on reaching the ground is

  1. $1:16$

  2. $1:128$

  3. $1:8\sqrt{2}$

  4. $1:1$


Correct Option: D

An electrical device draws 2 kW power from ac mains voltage 223 V(rms). The current differs lags in phase by $\phi = tan^{-1} \left ( -\frac{3}{4} \right )$ as compared to voltage. The resistance R in the circuit is:

  1. 15 $\Omega$

  2. 20 $\Omega$

  3. 25 $\Omega$

  4. 30 $\Omega$


Correct Option: B
Explanation:

Here, $P \, = \, 2 \, kW \, = \, 2 \, \times \, 10^3W$
$V _{rms} \, = \, 233 \, V, tan \, \phi \, = \, -\dfrac{3}{4}$
$As, \, P \, = \, \dfrac{V^2 _{rms}}{Z}$

$\Rightarrow \, Z \, = \, \dfrac{V^2 _{rms}}{P} \, = \, \dfrac{(223)^2}{2000} \, =  \dfrac{49729}{2000} \, = \, 24.86 \, \Omega \, or \, Z \, = \, 25 \, \Omega$

$\tan \, \phi \, = \, \dfrac{X _C \, - \, X _L}{R} \, = \, - \dfrac{3}{4} \, \therefore \, X _C \, - \, X _L \, = \, -\dfrac{3}{4} R.$

AS, $Z^2 \, = \, R^2 \, + \, (X _C \, - \, X _L)^2$

$\therefore \, (25)^2 \, = \, R^2 \, + \, \left(-\dfrac{3}{4} \, R \right)^2$

$625 \, = \, \dfrac{25 \, R^2}{16}.$

$R^2 \, = \, \dfrac{625 \, \times \, 16}{25} \,  \, \Rightarrow \, R \, = \, 20 \, \Omega$

A voltage of peak value 283 V and varying frequency is applied to series LCR combination in which R = 3$\Omega$, L = 25 mH and C = 400$\mu$F. Then the frequency (in Hz) of the source at which maximum power is dissipated in the above is

  1. 51.5

  2. 50.7

  3. 51.1

  4. 50.3


Correct Option: D
Explanation:

Here, $V _0 \, = \, 283 \, V, \, R \, = \, 3\Omega, \, L \, = \, 25 \, \times \, 10^{-3} \, H$
$C \, = \, 400 \, \mu F \, = \, 4 \, \times \, 10^{-4} F$
Maximum power is dissipated at resonance, for which 

$\nu \, = \, \dfrac{1}{2\pi \sqrt{LC}} \, = \, \dfrac{1 \, \times \, 7}{2 \, \times \, 22 \, \sqrt{25 \, \times \, 10^{-3} \, \times \, 4 \, \times \, 10^{-4}}}$

$= \, \dfrac{7 \, \times \, 10^3}{44\sqrt{10}} \, = \, 50.3 \, Hz$

Power dissipated in pure inductance will be

  1. $\dfrac {LI^{2}}{2}$

  2. $2LI^{2}$

  3. $\dfrac {LI^{2}}{4}$

  4. Zero


Correct Option: D
Explanation:

Power is dissipated only in the Resistor , Capacitor and Inductor only store  energy. So Inductance power dissipated is Zero.

A coil has a resistance $ 10 \Omega $ and an inductance of 0.4 henry. It is connected to an AC source of $ 6.5 V , \frac {30} { \pi } Hz. $ The average power consumed in the circuit, is :

  1. $ \cfrac {5} { 8} W $

  2. $ \cfrac {4} {3} W $

  3. $ \cfrac {3} {8} W $

  4. $ \cfrac {6} {7} W $


Correct Option: A

The power loss in an $AC$ circuit is $E _{rms}$ $I _{rms}$, when in the circuit there is only

  1. $C$

  2. $L$

  3. $R$

  4. $L,\ C$ and $R$


Correct Option: C
Explanation:

Inductors and capacitors bring a phase difference between the voltage and current in the circuit, hence changing the p.f. When only a resistance is present, $Poer\ factor= 1$.
The power loss in an AC circuit$ =E _{rms} I _{rms} Power\ factor $

The self inductance of the motor of an electric fan is 10 H. In order to impart maximum powr of 50 Hz, it should be connected to a capacitance of

  1. $8\mu F$

  2. $4\mu F$

  3. $2\mu F$

  4. $1\mu F$


Correct Option: D
Explanation:

Maximum power ($ I^2 R )$ is obtained when $I$ is maximum ( $Z$ is minimum).

For $Z$ minimum, $X _L=X _C$, which yields
$C=\dfrac {1}{(2\pi n)^2L}=\dfrac {1}{4\pi^2\times 50\times 50\times 10}$

$\therefore C=0.1\times 10^{-5}F=1\ \mu F$