Tag: physics

Questions Related to physics

A charge particle is moving in the direction of a magnetic filed.The magnetic force acting on the particle:

  1. is in the direction of its velocity

  2. is in the direction opposite to its velocity

  3. is perpendicular to its velocity

  4. is zero


Correct Option: D

According to Fleming's left hand rule,whose direction is indicated by thumb?

  1. $ Electric current O $

  2. $ Magnetic force O $

  3. $ Magnetic field O $

  4. $ None of these O $


Correct Option: C

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}} _{0}$ ln $(\sin x)dx$ equal to?

  1. $4I$

  2. $2I$

  3. $I$

  4. $\dfrac{I}{2}$


Correct Option: D
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 

$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\frac{\pi} {2}} _0 ln(\cos x)dx$ equal to?

  1. $\dfrac{I}{2}$

  2. $I$

  3. $2I$

  4. $4I$


Correct Option: A
Explanation:

$I = \displaystyle \int _{0}^{\pi} {ln(\sin x)dx}$

 using property,
$I = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {(ln(\sin (2\pi -x) +ln(\sin x)) dx}$

we know that $\sin(x) = \sin(2\pi -x)$ 
$I = 2\displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin x)dx}$
 by property,

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\sin (\dfrac{\pi}{2} - x))dx}$

$\dfrac{I}{2} = \displaystyle \int _{0}^{\dfrac{\pi}{2}} {ln(\cos x)dx}$

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi / 2 ) $ then $ f \left( \dfrac {1}{\sqrt3} \right) $ is :

  1. $3$

  2. $\sqrt3$

  3. $1/3$

  4. None of these


Correct Option: A
Explanation:

$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi/2 ) $
Differentiating both sides we get 
$ \dfrac {d}{dx} (1) [ 1 \cdot f (1)] - \cos x ( \sin^2 x) f ( \sin x) = -\cos x  $
$ \Rightarrow f ( \sin x) = \dfrac {1}{ \sin^2 x} $
$ \therefore f \left( \dfrac {1}{\sqrt3} \right) = f \left( \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right) \right) $
$ = \left[ \dfrac {1}{ \sin \left( \sin^{-1} \dfrac {1}{\sqrt3} \right)} \right]^2 = 3 $

Consider the integrals ${I _1} = \int _0^1 {{e^{ - x}}{{\cos }^2}xdx,} {I _2} = \int _0^1 {{e^{ - {x^2}}}{{\cos }^2}xdx,} {I _3} = \int _0^1 {{e^{ - x}}dx} $ and ${I _4} = \int _0^1 {{e^{ - (1/2){x^2}}}} dx$. The greatest of these integrals is

  1. $I _1$

  2. $I _2$

  3. $I _3$

  4. $I _4$


Correct Option: D
Explanation:

$I _1=\int _{0}^{4}e^{-x} cos^2x dx$
$I _2=\int _{0}^{1}e^{-x^2}cos^2x dx$
Both have $cos^2x$ so value get restricted more in (0, 1)
Now in (0, 1) $e^{-\frac {x^2}{2}}>e^{-x}$
$\therefore \int _{0}^{1}e^{-\frac {x^2}{2}}>\int _{0}^{1}e^{-x}$
$\therefore I _4>I _3>I _1>I _2$

Let $ f\left( a,b \right) =\int _{ a }^{ b }{ \left( { x }^{ 2 }-4x+3 \right) dx,\left( b>a \right)  }$ then

  1. $ f\left( a,3 \right)$ is least when $a=1$

  2. $f\left( 4,b \right)$ is an increasing function $ \forall b\ge 4$

  3. $ f\left( 0,b \right)$ is least for $b=2$

  4. $ \min { \left{ f\left( a,b \right) \right} =-\dfrac { 4 }{ 3 } } \forall a,b\in R$


Correct Option: A
Explanation:

First of all integrate the function.

$\displaystyle \int _{  }^{  }{ \left( { x }^{ 2 }-4x+3 \right) dx= } \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right] $

Apply the limits,
$\displaystyle f(a,b)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }$

Here $b=3$

Therefore,
$\displaystyle f(a,3)={ \left[ \frac { { x }^{ 3 } }{ 3 } -4\frac { { x }^{ 2 } }{ 2 } +3x \right]  } _{ a }^{ b }=\left[ \frac { 27 }{ 3 } -2\times 9+9 \right] -\left[ \frac { { a }^{ 3 } }{ 3 } -2{ a }^{ 2 }+3a \right] \ \displaystyle =2{ a }^{ 2 }-\frac { { a }^{ 3 } }{ 3 } -3a$

Hence,
Differentiate the above function to find the maximum or minimum.
$\displaystyle { f }^{ \prime  }\left( a,3 \right) =4a-{ a }^{ 2 }-3=0$

therefore $\displaystyle a=1,3$

Check whether the function is minimum or maximum.
$\displaystyle { f }^{ \prime \prime  }\left( a,3 \right) =4-{ 2a }=2$ which  is greater than $0$.
Hence the function $f(a,3)$ is minimum at $a=1$.



$\displaystyle \int _0^1 \dfrac{xe^x}{(x + 1)^2} dx =$

  1. $\dfrac{e}{2}$

  2. $\dfrac{e - 1}{2}$

  3. $\dfrac{3e}{2} -1$

  4. $\dfrac{e - 3}{2}$


Correct Option: C

$\displaystyle\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$ equals

  1. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  2. $\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x } } dx } $

  3. $\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \sin { x } }{ x } dx } $

  4. None of the above


Correct Option: B
Explanation:

Let $I=\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x }  }{ x }  } dx$


Put $\tan ^{ -1 }{ x } =\cfrac { z  }{ 2 } \Rightarrow x=\tan { \cfrac { z  }{ 2 }  } $

$\Rightarrow dx=\cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 } dz$

$\therefore \quad I=\displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { \cfrac { z }{ 2 } \left( \cfrac { 1 }{ 2 } \sec ^{ 2 } \cfrac { z  }{ 2 }  \right)  }{ \tan { \cfrac { z }{ 2 }  }  }  } dz$

$I=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \cfrac { \sin { \cfrac { z }{ 2 }  }  }{ \cos { \cfrac { z }{ 2 }  }  }  } .\cfrac { 1 }{ 2\cos ^{ 2 }{ \cfrac { z }{ 2 }  }  } dz } $

$=\cfrac { 1 }{ 2 } \int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ 2\sin { \cfrac { z }{ 2 }  } \cos { \cfrac { z }{ 2 }  }  }  } dz$

$=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { z }{ \sin { z }  }  } dz=\cfrac { 1 }{ 2 } \displaystyle\int _{ 0 }^{ \pi /2 }{ \cfrac { x }{ \sin { x }  }  } dx$

Evaluate $\displaystyle\int^{\frac{3}{2}} _{-1}|x\sin(\pi x)|dx$.

  1. $\dfrac {3}{\pi} +\dfrac {1}{\pi^2}$

  2. $3\pi +\pi^2$

  3. $\dfrac { 2 }{ \pi } +\dfrac { 1 }{ { \pi }^{ 2 } }$

  4. none of the above


Correct Option: A
Explanation:

$|x\sin(\pi x)|=\begin{cases}x\sin \pi x ,\,\,\,\,x\in(-1,1)\  -x\sin\pi x,x\in (1,\dfrac{3}{2})  \end{cases}$

$\displaystyle \int _{ 1 }^{ \frac { 3 }{ 2 }  }{ |x\sin(\pi x)| }dx=\int _{ -1 }^{ 1  }{ x\sin(\pi x)dx }+\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ -x\sin(\pi x)dx }$

$=\displaystyle \left|\dfrac{-x\cos\pi x}{\pi}\right|^1 _{-1}-\int _{- 1 }^{ 1  }{ \left(\dfrac{-\cos\pi x}{\pi}dx\right) }-\left[\left|\dfrac{-x\cos (\pi x)}{\pi}\right|^{\dfrac{3}{2}} _1-\int _{ 1 }^{ \frac { 3 }{ 2 }  }{ \dfrac{-\cos x }{\pi}dx } \right] $ 

$=\dfrac{1}{\pi}-\left(\dfrac{-1}{\pi}\right)+0-\left[\dfrac{-1}{\pi}-(\dfrac{1}{\pi^2})\right]$

$=\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi}+\dfrac{1}{\pi^2}$

$=\dfrac{3}{\pi}+\dfrac{1}{\pi^2}$