Tag: physics
Questions Related to physics
A charge particle is moving in the direction of a magnetic filed.The magnetic force acting on the particle:
According to Fleming's left hand rule,whose direction is indicated by thumb?
Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\dfrac{\pi}{2}} _{0}$ ln $(\sin x)dx$ equal to?
Consider the integral $I=\displaystyle\int^{\pi} _0 ln(\sin x)dx$.What is $\displaystyle\int^{\frac{\pi} {2}} _0 ln(\cos x)dx$ equal to?
$ \int _{\sin x}^1 t^2 f(t) dt = 1 - \sin x \forall x \epsilon (0, \pi / 2 ) $ then $ f \left( \dfrac {1}{\sqrt3} \right) $ is :
Consider the integrals ${I _1} = \int _0^1 {{e^{ - x}}{{\cos }^2}xdx,} {I _2} = \int _0^1 {{e^{ - {x^2}}}{{\cos }^2}xdx,} {I _3} = \int _0^1 {{e^{ - x}}dx} $ and ${I _4} = \int _0^1 {{e^{ - (1/2){x^2}}}} dx$. The greatest of these integrals is
Let $ f\left( a,b \right) =\int _{ a }^{ b }{ \left( { x }^{ 2 }-4x+3 \right) dx,\left( b>a \right) }$ then
$\displaystyle \int _0^1 \dfrac{xe^x}{(x + 1)^2} dx =$
$\displaystyle\int _{ 0 }^{ 1 }{ \cfrac { \tan ^{ -1 }{ x } }{ x } } dx$ equals
Evaluate $\displaystyle\int^{\frac{3}{2}} _{-1}|x\sin(\pi x)|dx$.