Tag: nuclear reactions

Questions Related to nuclear reactions

One milligram of matter convert into energy will give

  1. $90 joule$

  2. $9\times { 10 }^{ 3} joule$

  3. $9\times { 10 }^{ 5} joule$

  4. $9\times { 10 }^{ 10} joule$


Correct Option: D
Explanation:

$E={ mc }^{ 2 }={ 10 }^{ -3 }\times{ 10 }^{ -3 } \left( 3\times { 10 }^{ 8 } \right) ^{ 2 }=9\times { 10 }^{ 10 }J$

The mass and energy equivalent to $1 amu$ are respectively

  1. $1.67\times { 10 }^{ -27 }gm$, $9.30 MeV$

  2. $1.67\times { 10 }^{ -27 }kg$, $930 MeV$

  3. $1.67\times { 10 }^{ -27 }kg$,$ 1 MeV$

  4. $1.67\times { 10 }^{ -34 }kg$, $1 MeV$


Correct Option: B
Explanation:

1 amu
It is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state.


Mass of 1 mole C atoms $= 12 gms$
$1\ amu = $$ \cfrac{12}{12 \times 6.023 \times 10^{23}} = 1.66 \times 10^{-27} kg$

Energy equivalent, $E = mc^2 =1.66 \times 10^{-27} kg \times (3 \times 10^8)^2$$ = 930\ MeV$

If an electron and positron annihilate, then the energy released is

  1. $3.2\times { 10 }^{ -13 } J$

  2. $1.6\times { 10 }^{ -13 } J$

  3. $4.8\times { 10 }^{ -13 } J$

  4. $6.4\times { 10 }^{ -13 } J$


Correct Option: B
Explanation:

Energy of electron $={ m } _{ e }{ c }^{ 2 }$
Energy of positron $={ m } _{ p }{ c }^{ 2 }$
${ m } _{ e }$ = ${ m } _{ p }$, $ c=$ speed of light.

Thus according to conservation of energy released $=2{ m } _{ e }{ c }^{ 2 }$$=2\times 9.1\times { 10 }^{ -31 }\left( 3\times { 10 }^{ 8 } \right) ^{ 2 }=1.6\times { 10 }^{ -13 } Joules.$

The rest energy of an electron is

  1. $510 KeV$

  2. $931 KeV$

  3. $510 MeV$

  4. $931 MeV$


Correct Option: A
Explanation:

Rest energy of an electron $=m _{ e }{ c }^{ 2 }$
Here $m _{ e }=9.1\times { 10 }^{ -31 }kg$ and $C$ = velocity of light

$\therefore$ Rest energy $=9.1\times { 10 }^{ -31 }\times\left( 3\times { 10 }^{ 8 } \right) ^{ 2 }joule$

                         $=\displaystyle \frac { 9.1\times { 10 }^{ -31 }\times \left( 3\times { 10 }^{ 8 } \right) ^{ 2 } }{ 1.6\times { 10 }^{ -19 } } eV\simeq 510KeV$

1mg of matter convert into energy will give

  1. $90$ joule

  2. $9\times { 10 }^{ 3 }$ joule

  3. $9\times { 10 }^{ 5 }$ joule

  4. $9\times { 10 }^{ 10 }$ joule


Correct Option: D
Explanation:

$E=m{ c }^{ 2 }=10^{ -3 }\times { 10 }^{ -3 }\times { \left( 3\times { 10 }^{ 8 } \right)  }^{ 2 }= 9\times { 10 }^{ 10 }J$

The mass defect in a particular nuclear reaction in 0.3 grams.The amount of energy liberated in kilowatt hour is $\left( Velocity\ of \  light=3\times { 10 }^{ 8 }m/s \right) $

  1. $1.5\times { 10 }^{ 6 }$

  2. $2.5\times { 10 }^{ 6 }$

  3. $3\times { 10 }^{ 6 }$

  4. $7.5\times { 10 }^{ 6 }$


Correct Option: D
Explanation:

Mass defect in a nuclear reaction          $\Delta M = 0.3    g  =  3 \times 10^{-4}    kg$

Thus amount of energy released        $E = \Delta M    c^2  =  (3 \times 10^{-4}) \times (3 \times 10^8)^2           J$
$\implies         E =  27  \times 10^{12}      J                                  (1   kWh = 3.6  \times 10^6    J)$
$\therefore         E  = 7.5   \times 10^{6}     kWh $

The binding energy per nucleon for $\displaystyle { C }^{ 12 }$ is $7.68 MeV$ and that for $\displaystyle { C }^{ 13 }$ is $7.5 MeV$. How much energy is  required to remove a neutron from $\displaystyle { C }^{ 13 }$ ?

  1. $5.34MeV$

  2. $5.5MeV$

  3. $9.5 MeV$

  4. $9.34MeV$


Correct Option: A
Explanation:

Total B.E. for $C^{13}$ is $13\times7.5=97.5\ MeV$

Total B.E. for $C^{12}$ is $12\times7.68=92.16\ MeV$
The energy required to remove a neutron from $C^{13}$ is $97.5-92.16=5.34\ MeV$

When a neutron collides with a quasi free proton, it loses half of its energy on the average in the every collission. How many collisions, on the average, are required to reduce a 2 MeV neutron to a thermal energy df 0.04 eV.

  1. 30

  2. 22

  3. 35

  4. 26


Correct Option: D
Explanation:

Let $E _{0}$ be the initial energy of neutron, the energy of neutron after 1 collision reduces to $E _{0}/2=E _{1}(let)$ i.e. $E _{1}/E _{0}=1/2$. 


After second collision, $E _{2}/E _{0}=(1/2)^{2}$, therefore after $n$ collision.
           $\dfrac{E _{n}}{E _{0}}=(\dfrac{1}{2})^{n}$ 


Here, given $E _{0}=2MeV , E _{n}=0.04eV=0.04\times10^{-6}MeV$ 

Hence, $\dfrac{0.04\times10^{-6}}{2}=(\dfrac{1}{2})^{n}$ 

             $2\times10^{-8}=(\dfrac{1}{2})^{n}$ 

             $log 2-8log10=-nlog2$ 

             $0.3010-8=-0.3010n$ 

             $n=0.7699/0.3010=25.58$

Find the energy released during the following nuclear reaction.


$ _{1}{H}^{1}  +   _{3}{Li}^{7}  \longrightarrow   _{2}{He}^{4}  +   _{2}{He}^{4}$

The mass of $ _{3}{Li}^{7}$ is $7.0160  u$,  $ _{2}{He}^{4}$ is $4.0026  u$ and proton is $1.0078  u$.

  1. 19.285  MeV

  2. 14.232 MeV

  3. 17.326 MeV

  4. 23.564 MeV


Correct Option: C
Explanation:

The mass of the reactant nuclei $= 7.0160 + 1.0078 = 8.0238  u$
The mass of the product nuclei $= 4.0026 + 4.0026 = 8.0052  u$
Mass defect $= \Delta m = 8.0238 - 8.0052 = 0.0186  u$
Energy released $= 0.0186  u \times 931.5  MeV = 17.326  MeV$

The binding energy of $ _{3}{Li}^{7}$ and $ _{2}{He}^{4}$ are $39.2  MeV$ and $28.24  MeV$ respectively. Which of the following statements is correct?

  1. Helium is more stable than lithium.

  2. Lithium is more stable than helium.

  3. Both are equally stable

  4. None of the above


Correct Option: A
Explanation:

The nucleons present in $ _{3}{Li}^{7}$ is $7$.
The binding energy per nucleon for lithium is ${39.2}/{7} = 5.6  MeV$
The binding per nucleon for helium is ${28.24}/{4} = 7.06  MeV$
The binding energy per nucleon is the measure of stability of the nuclei. Therefore, helium is more stable than lithium.