Tag: sum to infinite terms of a gp
Questions Related to sum to infinite terms of a gp
If $S _{1}, S _{2}, S _{3}$ are respectively the sum of n, 2n and 3n terms of a G.P. Then $S _{1}(S _{3}-S _{2}) = (S _{2} -S _{1})^{2}$.
If $|x| > 1$, then
$\left(1-\dfrac{1}{x}\right)+\left(1-\dfrac{1}{x}\right)^2+\left(1-\dfrac{1}{x}\right)^3+.....=$
If $e^{\displaystyle \left [ \left ( \sin^{2}x + \sin^{4}x + \sin^{6}x + .... + \infty \right ) \log _{e}2\right ]}$ satisfies the equation $\displaystyle x^{2} -9x + 8 = 0$,then the value of $\displaystyle g \left ( x \right ) = \frac{\cos x}{\cos x + \sin x}$ is
lf $e^{(\cos^{2}x+\cos^{4}x+\cos^{6}x+\ldots.)\log 3}$ satisfies $y^{ 2 }-10y+9=0$ and $0\le x\le \cfrac { \pi }{ 2 } $, then $\cot^{2}x=$
If the sum of an infinite $GP$ is $20$ and sum of their square is $100$ then common ration will be=
For $0 < \phi < \pi/2$ if $x=\sum _{n=0}^{\infty }\cos ^{2n} \phi, y=\sum _{n=0}^{\infty }\sin ^{2n} \phi, z=\sum _{n=0}^{\infty }\cos ^{2n} \phi \sin^{2n}\phi$, then
The sum of the intercepts cut off by the axes on the lines $ x+y=a,x+y=ar,x+y=ar^{2}\ldots\ldots\ldots$ where $a\neq 0$ and $r=\displaystyle \dfrac{1}{2}$ is