Tag: sum to infinite terms of a gp
Questions Related to sum to infinite terms of a gp
If the sum of the series $2+\frac {\displaystyle 5}{\displaystyle x}+\frac {\displaystyle 25}{\displaystyle x^2}+\frac {\displaystyle 125}{\displaystyle x^3}+....$ is finite, then-
If $x=1+a+a^2+...\infty$ where $|a| <1 $ and $y=1+b+b^2+...\infty$, where $|b| < 1$, then $1+ab+a^2b^2+...\infty =\dfrac{xy}{x+y-1}$.
${x}^{\cfrac{1}{2}}.{x}^{\cfrac{1}{4}}.{x}^{\cfrac{1}{8}}.{x}^{\cfrac{1}{16}}.....$ to $\infty$
The solution of the equation $(8)^{1+|cos x|+|cos x|^2+|cos x|^3+...)}=4^3$ in the interval $(-\pi, \pi)$ are.
The sum of $7+1+.......$
The series $\dfrac{2x}{x+3}+(\dfrac{2x}{x+3})^{2}+(\dfrac{2x}{x+3})^{3}+........\infty$ will have a definite sum when
Find the sum of $4,2,1,\cdots$
If $y=x^{\dfrac {1}{3}}.x^{\dfrac {1}{9}}.x^{\dfrac {1}{27}}......\infty $, then $y =$
If sum of an infinite geometric series is $\dfrac{4}{3}$ and its Ist term is $\dfrac{3}{4}$, then its common ratio is
The value of x that satisfies the relation
$x=1-x+{ x }^{ 2 }-{ x }^{ 3 }+{ x }^{ 4 }-{ x }^{ 5 }+........\infty $