Tag: sum to infinite terms of a gp
Questions Related to sum to infinite terms of a gp
For first $n$ natural numbers we have the following results with usual notations $ \displaystyle \sum _{r=1}^{n}r =\frac{n(n+1)}{2}, \sum _{r=1}^{n}r^{2} =\frac{n(n+1)(2n+1)}{6},\sum _{r=1}^{n}r^{3}=\left ( \sum _{r=1}^{n}r \right )^{2}$ If $\displaystyle a _{1}a _{2}....a _{n} \in A.P $ then sum to $n$ terms of the sequence $\displaystyle \frac{1}{a _{1}a _{2}},\frac{1}{a _{2}a _{3}},...\frac{1}{a _{n-1}a _{n}}$ is equal to $\displaystyle \frac{n-1}{a _{1}a _{n}}$
and the sum to $ n$ terms of a $G.P$ with first term '$a$' & common ratio '$r$' is given by $\displaystyle S _{n}= \frac{lr-a}{r-1}$ for $ r \neq 1 $ for $ r =1 $ sum to $n$ terms of same $G.P.$ is $n$ $a$, where the sum to infinite terms of$G.P.$ is the limiting value of
$\displaystyle \frac{lr-a}{r-1} $ when $\displaystyle n \rightarrow \infty ,\left | r \right | < l $ where $l$ is the last term of $G.P.$ On the basis of above data answer the following questionsThe sum to infinite terms of the series $\displaystyle \frac{1}{2}+\frac{1}{6}+\frac{1}{18}+.. $ is equal to ?
If $\displaystyle x=\sum _{a=0}^{\infty }a^{n},y=\sum _{a=0}^{\infty }b^{n},z=\sum _{a=0}^{\infty }c^{n}$ Where $a,b,c $ are in A.P and $\displaystyle \left | a \right |<1,\left | b \right |<1,\left | c \right |<1$ then $x,y,z$ are in
If $R \subset\left ( 0,\pi \right )$ denote the set of values of which satisfies the equation $ \displaystyle 2^{\left ( 1+\left | \cos x \right |+\left | cos^{2}x \right |+\left | cos^{3}x \right | \right )+\left | cos^{4}x \right |...............\infty}=4$ then $R$ equals
The sum of the series
$\dfrac { 1 } { 1.2 } - \dfrac { 1 } { 2.3 } + \dfrac { 1 } { 3.4 } \ldots \ldots \ldots$ up to $\infty$ is equal to
The sum of the infinite series, ${ 1 }^{ 2 }-\frac { { 2 }^{ 2 } }{ 5 } +\frac { { 3 }^{ 2 } }{ { 5 }^{ 2 } } -\frac { { 4 }^{ 2 } }{ { 5 }^{ 3 } } +\frac { { 5 }^{ 2 } }{ { 5 }^{ 4 } } -\frac { { 6 }^{ 2 } }{ { 5 }^{ 5 } } +.........$ is :
The first term of an infinitely decreasing G.P. is unity and its sum is S. The sum of the squares of the terms of the progression is
If $0<\phi < \pi /2,$ and
$x= \sum _{n=0}^{\infty} \cos ^{2n} \phi$, $ y=\sum _{n=0}^{\infty } \sin ^{2n} \phi$
and $z=\sum _{n=0}^{\infty} \cos ^{2n} \phi \sin ^{2n} \phi $
then
Find the sum of the infinite geometric series where the beginning term is $-1$ and the common ratio is $\dfrac{1}{2}$.
$1 + x + x^2 + x^3 +......$ = ?
If $a=\sum _{ n=0 } ^{\infty }{x^n } ,b=\sum _{n=0 }^{ \infty }{ y^n } , c=\sum _{n=0 }^{ \infty }{ (xy)^n } $ where $|x| ,| y| < 1$ ; then