Tag: writing and expanding numbers

Questions Related to writing and expanding numbers

Find the rational numbers between the following numbers. 

$-0.2$ and $-0.22$.

  1. $-0.210 > -0.211 > -0.312 > -0.213 > -0.314 > 0.220$

  2. $-0.210 > -0.211 > -0.212 > -0.213 > -0.314 > 0.220$

  3. $-0.210 > -0.211 > -0.312 > -0.213 > -0.214 > 0.220$

  4. $-0.210 > -0.211 > -0.212 > -0.213 > -0.214 > 0.220$


Correct Option: D
Explanation:

Rational number between two numbers $ a $ and $ b = \dfrac {(a +

b)}{2} $

So,
a rational number between $ -0.2 $ and $ - 0.22 = \dfrac {(-0.2 - 0.22)}{2} = -0.21 $

Now, another rational number
between $ -0.21 $ and $ - 0.22 = \dfrac {(-0.21 - 0.22)}{2} = -0.215 $

rational number between $ -0.215 $ and $ - 0.21 = \dfrac {(-0.215 - 0.21)}{2} = -0.212 $ 

rational number between $ -0.215 $ and $ - 0.212 = \dfrac {(-0.215 - 0.212)}{2} = -0.213 $ 

rational number between $ -0.215 $ and $ - 0.213 = \dfrac {(-0.215 - 0.213)}{2} = -0.214 $ 

Similarly,
rational numbers between $ -0.2 $ and $ - 0.22 $ are $-0.210, -0.211 , -0.212, -0.213 , -0.214$ etc

Find the five rational numbers between $-5$ and $-6$

  1. $-5.1 ,-5.2 , -3.3 , -5.4 , -5.5  $

  2. $-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

  3. $-5.1 , -6.2 , -5.3 , -5.4 , -5.5 $

  4. $-6.1 , -5.2 , -5.3 , -5.4 , -5.5 $


Correct Option: B
Explanation:
$−5>(−5−0.1)=−5.1>−5.2=(−5.1−0.1)>−5.3=(−5.2−0.1)>−5.4\\=(−5.3−0.1)>−5.5=(−5.4−0.1)>...>−6$

$-5>−5.1>−5.2>−5.3>−5.4>−5.5...>−6$

The five rational numbers between $−5$ and $−6$
$-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

Which one is in the descending order in the following?

  1. $\displaystyle 6/7, 4/5, 3/4, 7/9$

  2. $\displaystyle 6/7, 4/5, 7/9, 3/4$

  3. $\displaystyle 3/4, 7/9, 4/5, 6/7$

  4. $\displaystyle 7/9, 3/4, 6/7, 4/5$


Correct Option: B
Explanation:
Here we have four factors $\dfrac{3}{4},  \dfrac{4}{5},   \dfrac{6}{7},   \dfrac{7}{9}$
LCM of 4, 5, 7 and 9 is 1260
So, 
$\dfrac{3}{4} \times\dfrac{315}{315}$ = $\dfrac{945}{1260}$

$\dfrac{4}{5} \times\dfrac{252}{252}$ = $\dfrac{1008}{1260}$

$\dfrac{6}{7} \times\dfrac{180}{180}$ = $\dfrac{1080}{1260}$

$\dfrac{7}{9} \times\dfrac{140}{140}$ = $\dfrac{980}{1260}$
As, 
1080 > 1008 > 980 > 945
So, $\dfrac{6}{7} > \dfrac{4}{5} >  \dfrac{7}{9} >  \dfrac{3}{4}$

Arrange in descending order:
$1,00,000; 99,999; 9,90,000; 1,10,000$

  1. $1,00,000; 99,999; 9,90,000; 1,10,000$

  2. $ 1,10,000; 9,90,000; 99,999; 1,00,000$

  3. $ 9,90,000; 99,999; 1,10,000; 1,00,000$

  4. $ 9,90,000; 1,10,000; 1,00,000; 99,999$


Correct Option: D
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in descending order as 
$9,90,000;\ 1,10,000;\ 1,00,000;\ 99,999$

Arrange the following in descending order.
$\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$, $\dfrac{9}{8}$ 

  1. $\dfrac{7}{2}$, $\dfrac{9}{8}$, $\dfrac{3}{2}$, $\dfrac{9}{5}$, $\dfrac{5}{2}$

  2. $\dfrac{7}{2}$, $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$

  3. $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$, $\dfrac{7}{2}$

  4. $\dfrac{9}{8}$, $\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$


Correct Option: B
Explanation:

$\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2},\cfrac{9}{5},\cfrac{9}{8}$

We know that the number with largest denominator is the smallest one.
And among $\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2}$ the one with largest numerator is the largest one.
Among $\cfrac{9}{5}$ and $\cfrac{3}{2},$ $\cfrac{9}{5}$ is larger.
Hence descending order is $\cfrac { 7 }{ 2 } ,\cfrac { 5 }{ 2 } ,\cfrac { 9 }{ 5 } ,\cfrac { 3 }{ 2 } ,\cfrac { 9 }{ 8 }.$

What is the difference in the place values of the digit 8 in the number 9380568?

  1. 79992

  2. 78992

  3. 799992

  4. 789992


Correct Option: A