Tag: writing and expanding numbers

Questions Related to writing and expanding numbers

The ascending order of XX, XXXVI, V is ________.

  1. V, XXXVI, XX

  2. XX, V, XXVI

  3. V, XX, XXXVI

  4. XXXVI, XX, V


Correct Option: C
Explanation:

The ascending order of XX, XXXVI, V is V, XX, XXXVI

Which of the following is ninth to the right of the seventeenth from the right end of the given arrangement?

M O K T % J 9 I B @ 8 $\circledS$ C # F 1 V 7 $\Box$ 2 E G 3 Y 5 $ 6 T

  1. E

  2. %

  3. I

  4. Y


Correct Option: A
Explanation:

For the given arrangement we can see that the $17$ th no from right end is $\circledS$, 

and we can easily see that $9$ th no from the right of the $17$ th element from the right is E .

If the digits of the number $5726489$ are arranged in ascending order, then how many digits will remain at the same position?

  1. None

  2. One

  3. Two

  4. Three


Correct Option: D
Explanation:

The given number is $5726489$.


After arranging digits of number in ascending order the number becomes $2456789$

Now, we can see after arranging number in ascending order digits $6,8$ and $9$ remain at the same position.

$\therefore$  $3$ digits will  remain at the same position.

Write the following rational numbers in ascending order:

$\dfrac{3}{4},\dfrac{7}{12}, \dfrac{15}{11}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{-4}{5}, \dfrac{-102}{81}, \dfrac{-13}{7}$.

  1. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{15}{11}, \dfrac{7}{12}, \dfrac{3}{4}$.

  2. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{7}{12}, \dfrac{3}{4}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{15}{11}$.

  3. $\dfrac{-13}{7},\dfrac{-102}{81}, \dfrac{-4}{5}, \dfrac{7}{12}, \dfrac{3}{4}, \dfrac{101}{100}, \dfrac{22}{19}, \dfrac{15}{11}$.

  4. $\dfrac{3}{4},\dfrac{7}{12}, \dfrac{15}{11}, \dfrac{22}{19}, \dfrac{101}{100}, \dfrac{-4}{5}, \dfrac{-102}{81}, \dfrac{-13}{7}$.


Correct Option: C

If the following numbers  are arranged in ascending order, what will be the middle number?
$687,\ 789,\ 648,\ 693,\ 672$

  1. 687

  2. 789

  3. 693

  4. 672


Correct Option: A
Explanation:

Given numbers in ascending order is, 


$648, 672, 687, 693, 789$


It can be clearly seen that middle number is $687.$ 

Among $\dfrac{5}{6},\dfrac{5}{7}$ and $\dfrac{5}{8}$, the greatest fraction is 

  1. $\dfrac{5}{6}$

  2. $\dfrac{5}{7}$

  3. $\dfrac{5}{8}$

  4. None of these


Correct Option: A
Explanation:
Since all the fractions having same numarator so the greatest fraction will one with lowest denominator
 So the greatest fraction is $\dfrac{5}{6}$

Arrange in ascending order $\sqrt [ 6 ]{ 7 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } $

  1. $\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 6 ]{ 7 } $

  2. $\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 6 ]{ 7 } $

  3. $\sqrt [ 6]{ 7 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } $

  4. $None\ of\ these$


Correct Option: A

The ascending order of minimum values of the function  $P:\sin ^{ -1 }{ x } -\cos ^{ -1 }{ x } $, $Q=\tan ^{ -1 }{ x } -\cot ^{ -1 }{ x } $, $R=\sec ^{ -1 }{ x } -\csc ^{ -1 }{ x } $

  1. P, Q, R

  2. P, R, Q

  3. Q, P, R

  4. Q, R, P


Correct Option: A

The value of $1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$ is?

  1. $\dfrac{121}{108}$

  2. $\dfrac{3}{2}$

  3. $\dfrac{31}{2}$

  4. $\dfrac{91}{81}$


Correct Option: D
Explanation:

$1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$


$=1+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}$


$=\dfrac{324+27+9+3+1}{324}$

$=\dfrac{364}{324}$

$=\dfrac{91}{81}$

Hence, the answer is $\dfrac{91}{81}.$

The ascending order of $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $ is

  1. $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $

  2. $\sqrt { 2 } ,\sqrt [ 4 ]{ 6 } ,\sqrt [ 3 ]{ 4 } $

  3. $\sqrt [ 3 ]{ 4 }, \sqrt {2},\sqrt [ 4 ]{ 6 } $

  4. $\sqrt [ 4 ]{ 6 },\sqrt [ 3 ]{ 4 } ,\sqrt {2}$


Correct Option: A