Tag: ellipse

Questions Related to ellipse

The length of latus rectum of $\dfrac {x^2}9+\dfrac {y^2}2=1$ is 

  1. $\dfrac 74$

  2. $\dfrac 34$

  3. $\dfrac 43$

  4. None.


Correct Option: C
Explanation:

The length of latus Rectum of $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$

is $\dfrac{2b^2}{a}$

Here $a=3\quad b=\sqrt 2$

$\Rightarrow \dfrac{2b^2}{a}=\dfrac{2(\sqrt 2)^2}{3}=\dfrac{2(2)}{3}=\dfrac 43$

An ellipse of semi-axis $a,b,$ slides between two perpendicular lines, then the locus of its foci is, (the two lines being taken  as the axes of coordinates)

  1. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$

  2. $(x^{2}+y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  3. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4b^{2}x^{2}y^{2}$

  4. $(x^{2}-y^{2})(x^{2}y^{2}+b^{2})=4a^{2}x^{2}y^{2}$


Correct Option: A

If equation $(5x-1)^{2}+(5y-2)^{2}=(\lambda^{2}-2\lambda+1)(3x+4y-1)^{2}$ represents an ellipse, then $\lambda \in$

  1. $(0, 1)$

  2. $(0, 2)$

  3. $(1, 2)$

  4. $(0, 1)\cup (1, 2)$


Correct Option: B

The number of parabolas that can be drawn if two ends of the latus rectum are given 

  1. 1

  2. 2

  3. 4

  4. 3


Correct Option: B

The equation $\dfrac{{x}^{2}}{2-r}+\dfrac{{y}^{2}}{r-5}+1=0$ represents an ellipse if

  1. $r>1$

  2. $r>5$

  3. $2 < r< 5$

  4. $r<2$ or $r>5$


Correct Option: C

The locus of the mid points of the portion of the tangents to the ellipse intercepted between the axes

  1. $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}=4$

  2. $\dfrac{a^{2}}{x^{2}}+\frac{b^{2}}{y^{2}}=4$

  3. $\dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=4$

  4. none of these


Correct Option: A

Eccentricity of ellipse $\frac{{{x^2}}}{{{a^2} + 1}} + \frac{{{y^2}}}{{{a^2} + 2}} = 1$ is $\frac{1}{{\sqrt 3 }}$  then length of Latusrectum is 

  1. $\frac{8}{{\sqrt 3 }}$

  2. $\frac{4}{{\sqrt 3 }}$

  3. $2\sqrt 3 $

  4. $\frac{{\sqrt 3 }}{2}$


Correct Option: A
Explanation:

$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$

Eccentricity of ellipse $=\cfrac{1}{\sqrt 3}$
So, $\cfrac{\sqrt{b^2-a^2}}{a}=\cfrac{1}{\sqrt 3}$
Where ellipse 
$\cfrac{x^2}{a^2+1}+\cfrac{y^2}{a^2+2}=1$
So, here
$\cfrac{\sqrt{a^2+2a^2-1}}{a}=\cfrac{1}{\sqrt 3}$
$\implies a^2=2$
So, equation is 
$\cfrac{x^2}{3}+\cfrac{y^2}{4}=1$
Latus rectum $=\cfrac{2b^2}{a}=\cfrac{2\times 4}{\sqrt 3}=\cfrac{8}{\sqrt 3}$

The equation $\dfrac { x ^ { 2 } } { 10 - a } + \dfrac { y ^ { 2 } } { 4 - a } = 1$ represents an ellipse if

  1. $a < 4$

  2. $a > 4$

  3. $4 < a < 10$

  4. None of these


Correct Option: D
Explanation:

$\dfrac{x^2}{10-a}+\dfrac{y^2}{4-a}=1$

For this equation to represent an ellipse its eccentricity shoule lie between $0$ and $1$.
$\sqrt{1-\dfrac{b^2}{a^2}}< 1$
$0< 1-\dfrac{(4-a)^2}{(10-a)^2} <1$
$0 < (10-a)^2-(4-a)^2 <1$
$0< 84-12a <1$
$0< (7-a)12<1$
$12(7-a)> 0$ and
$12(7-a)<1$
$a< 7$ and $7-a<\dfrac{1}{12}$
$a< 7$ and $a >\dfrac{83}{12}$

If the latus rectum of an ellipse $x ^ { 2 } \tan ^ { 2 } \varphi + y ^ { 2 } \sec ^ { 2 } \varphi =$ $1$ is $1 / 2 $ then $\varphi $ is

  1. $\pi / 2$

  2. $\pi / 6$

  3. $\pi / 3$

  4. $5$ $\pi/ 12$


Correct Option: D
Explanation:

Given $x^2 tan^2 \phi + y^2 \, sec^2 \phi = 1$

$\rightarrow \dfrac{x^2}{(1/tan^2 \phi)} + \dfrac{y^2}{(1/sec^2 \phi)} = 1$
$a = \pm \dfrac{1}{tan \phi} , b = \pm \dfrac{1}{sec \phi}$
and $\rightarrow e^2 = 1 - \dfrac{b^2}{a^2}$
$\rightarrow e^2 = 1 - \dfrac{1/sec^2 \phi}{1/tan^2 \phi} = 1 - \dfrac{tan^2 \phi}{sec^2 \phi}$
$\rightarrow e^2 = 1 - sin^2 \phi = cos^2 \phi$
length of latus rectum 
$(LL') = \dfrac{2 b^2}{a} = 2a (1 - e^2)$
$\rightarrow 2a (1 - cos^2 \phi) = 2a. sin^2 \phi = \dfrac{1}{2} $ (Given)
$\therefore 2. \dfrac{cos \phi}{sin \phi} sin^2 \phi = \dfrac{1}{2}$
$\rightarrow 2 cos \phi \, sin \phi = \dfrac{1}{2}$
$\rightarrow sin^2 \phi = \dfrac{1}{2} $
$\rightarrow 2 \phi = \dfrac{\pi}{6} , \dfrac{5 \pi}{6}$
$\therefore \phi = \dfrac{\pi}{12}$    or 
$\phi = \dfrac{ 5 \pi}{12}$

vertices of an ellipse are $(0,\pm 10)$ and its eccentricity $e=4/5$ then its equation is 

  1. $90x^2-40y^2=3600$

  2. $80x^2+50y^2=4000$

  3. $36x^2+100y^2=3600$

  4. $100x^2+36y^2=3600$


Correct Option: D
Explanation:

Let the equation of the required ellipse be 

$\dfrac { { x }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { b }^{ 2 } } =1\longrightarrow \left( 1 \right) $
since the vertices of the ellipse are on $y$-axis, so the coordinate of the vertices are $\left( 0,\pm b \right) $
$\therefore b=10\ Now,\quad { a }^{ 2 }=b^{ 2 }\left( 1-{ e }^{ 2 } \right) \ \Rightarrow { a }^{ 2 }=100\left( 1-\dfrac { 16 }{ 25 }  \right) \ \Rightarrow { a }^{ 2 }=36\ $
substituting the value of ${ a }^{ 2 }$ and ${ b }^{ 2 }$ in equation $(1)$
we get, $\dfrac { { x }^{ 2 } }{ 36 } +\dfrac { { y }^{ 2 } }{ 100 } =1\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }=3600\ \Rightarrow 100{ x }^{ 2 }+36{ y }^{ 2 }-3600=0$