Tag: ellipse

Questions Related to ellipse

If the distance of one of the focus of hyperbola from the two directrices of hyperbola are 5 and 3, then its eccentricity is

  1. $\sqrt{2}$

  2. 2

  3. 4

  4. 8


Correct Option: B
Explanation:
Focus $=(\pm ae, o)$
directive $x \Rightarrow \pm a/e$ 
$\left(ae- \dfrac{a}{e} \right)= 3 \left(ae+ \dfrac{a}{e} \right)=5$
$\dfrac{a (e^{2}-1)= 3e}{a (e^{2}+1)= 5e} \Rightarrow 5e^{2}-5 =-3 e^{2}+3$
$2 e^{2}=8$
$e^{2}= 4$
$e=2$

The eccentricity of the conic represented by $\sqrt{(x+2)^2+y^2}+\sqrt{(x-2)^2+y^2}=8$ is?

  1. $\dfrac13$

  2. $\dfrac12$

  3. $\dfrac14$

  4. $\dfrac15$


Correct Option: B

The parabola $( y + 1 ) ^ { 2 } = a ( x - 2 )$ passes through the point $( 1 , - 2 )$ then the equation of its directrix is

  1. $4 x + 1 = 0$

  2. $4 x - 1 = 0$

  3. $4 x + 9 = 0$

  4. $4 x - 9 = 0$


Correct Option: A
Explanation:

The equation of parabola is $(y+1)^2=a(x-2)$


it passes through $(1,-2)$

$\implies (-2+1)^2=a(1-2)\$

$(-1)^2=-a\$

$a=-1$

So the equation of a parabola is 

$(y+1)^2=-1(x-2)\$

$(y+1)^2=4\left(\dfrac{-1}{4}\right)(x-2)$

the directrix of parabola is $x=\dfrac{-1}{4}\$

$4x+1=0$

The eccentricity of the conic represented by the equation $x^{2} + 2y^{2} - 2x + 3y + 2 = 0$ is

  1. $0$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{\sqrt{2}}$

  4. $\sqrt{2}$


Correct Option: C
Explanation:

$x^2 + 2y^2 - 2x + 3y + 2 = 0$
$\Rightarrow (x - 1)^2 + 2 (y + \dfrac34)^2 = \dfrac{1}{8}$
$\Rightarrow \dfrac {(x - 1)^2}{1 / 8} + \dfrac {(y + 3 / 4)^2}{1 / 16} = 1$
It is an ellipse with $a^2 = 1/8 , b^2 = 1/16$ .Hence its eccentricity
$e = \sqrt {1 - \dfrac{b^2}{a^2}} = \sqrt {1 - \dfrac8{16}} = \dfrac1{\sqrt 2}$

The eccentricity of the conic $9{ x }^{ 2 }+5{ y }^{ 2 }-54x-40y+116=0$ is:

  1. $\cfrac { 1 }{ 3 } $

  2. $\cfrac { 2 }{ 3 } $

  3. $\cfrac { 4 }{ 9 } $

  4. $\cfrac { 2 }{ \sqrt { 5 } } $


Correct Option: B
Explanation:

Given conic is $9x^2+5y^2-54x-40y+116=0$


$\Rightarrow 9(x^2-6x)+5(y^2-8y)+116=0$

$\Rightarrow 9(x-3)^2+5(y-4)^2-81-80+116=0$

$\Rightarrow 9(x-3)^2+5(y-4)^2-45=0$

$\Rightarrow 9(x-3)^2+5(y-4)^2=45$

Divide both sides by $45$, we get

$\dfrac{(x-3)^2}{5}+\dfrac{(y-4)^2}{9}=1$ which is in the standard form $\dfrac{x^2}{b^2}+\dfrac{y^2}{a^2}=1$ of ellipse.

Thus $b^2=5, a^2=9$

Eccentricity $=\sqrt{1-\dfrac{b^2}{a^2}}$

$\Rightarrow e=\sqrt{1-\dfrac{5}{9}}$

$=\sqrt{\dfrac{9-5}{9}}$

$=\sqrt{\dfrac{4}{9}}$

$\therefore e=\dfrac{2}{3}$

The equation of the ellipse whose equation of directrix is $3x+4y-5=0$, coordinates of the focus are $(1,2)$ and the eccentricity is $\dfrac{1}{2}$ is $91x^2+84y^2-24xy-170x-360y+475=0$

  1. True

  2. False


Correct Option: A
Explanation:

Let $P(x,y)$ be any point on the ellipse and PM be the perpendicular from P upon the directrix $3x+4y-5=0$.

Then by the definition,
$\dfrac{SP}{PM}=e$

$SP=e.PM$
$\sqrt{(x-1)^2+(y-2)^2}=\dfrac{1}{2}|\dfrac{3x+4y-5}{\sqrt{3^2+4^2}}|$

$(x-1)^2+(y-2)^2=\dfrac{1}{4}. \dfrac{(3x+4y-5)^2}{25}$

$100(x^2+y^2-2x-4y+5)=9x^2+16y^2+24xy-30x-40y+25$
$91x^2+84y^2-24xy-170x-360y+475=0$ is the equation of the ellipse.

The equation of the ellipse whose foci are $(\pm5,0)$ and of the directrix is $5x=36$, is

  1. $\dfrac{x^2}{36}+\dfrac{y^2}{11}=1$

  2. $\dfrac{x^2}{6}+\dfrac{y^2}{\sqrt{11}}=1$

  3. $\dfrac{x^2}{6}+\dfrac{y^2}{11}=1$

  4. None of these


Correct Option: A
Explanation:

Given foci $(\pm 5,0)$ and directrix $x=\cfrac{36}{5}$

Then $ae=5$ (focus coordinates ($\pm ae,0)]$....(1)
$\cfrac{a}{e}=\cfrac{36}{5}$ (directrix equation $x=\cfrac{a}{e}$]....(2)
From (1) and (2) ${a}^{2}=36\Rightarrow$ $a=6$
$e=\cfrac{5}{6}\Rightarrow $ $\sqrt { 1-\cfrac { { b }^{ 2 } }{ { a }^{ 2 } }  } =\cfrac { 5 }{ 6 } $
$1-\cfrac { { b }^{ 2 } }{ 36 } =\cfrac{25}{36}$
$b=\sqrt 11$
required equation $\cfrac{{x}^{2}}{36}+\cfrac{{y}^{2}}{11}=1$

If the eccentricity of the ellipse $\dfrac{x^2}{a^2 + 1} + \dfrac{y^2}{a^2 + 2 } = 1$ is $\dfrac{1}{\sqrt{6}}$, then the length of latusrectum is

  1. $\dfrac{5}{\sqrt{6}}$

  2. $\dfrac{10}{\sqrt{6}}$

  3. $\dfrac{8}{\sqrt{6}}$

  4. None of these


Correct Option: B

If focus of the parabola is $(3,0)$ and length of latus rectum is $8$, then its vertex is

  1. $(2,0)$

  2. $(1,0)$

  3. $(0,0)$

  4. $(-1,0)$


Correct Option: B
Explanation:
Given, focus $=(3,0)$ and Length of latus rectum $= 8$

$\Rightarrow 4a=8$ $\Rightarrow a=2$

$\Rightarrow$ Vertex = $(3-a,0)$ $=(1,0)$

$\therefore $ Option B is correct

If $(0,0)$ be the vertex and $3x-4y+2=0$ be the directrix of a parabola, then the length of its latus rectum is

  1. $4/5$

  2. $2/5$

  3. $8/5$

  4. $1/5$


Correct Option: C
Explanation:
Distance of vertex from directrix = $\dfrac{\left | 3(0)-4(0)+2 \right |}{\sqrt{3^{2}+4^{2}}}= \dfrac{2}{5}=a$

Length of latus rectum = $4a= \dfrac{8}{5}$

$\therefore $ Option C is correct