Tag: ellipse

Questions Related to ellipse

Let $5x^2+7y^2=140$, then $(3,-4)$ is:

  1. Outside the ellipse

  2. Inside the ellipse

  3. On the ellipse

  4. Data insufficient


Correct Option: A
Explanation:

Equation of ellipse :   ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

putting point $(3,-4)$ in equation of ellipse
     $=5\times { 3 }^{ 2 }+7{ \left( -4 \right)  }^{ 2 }-140$
     $=45+112-140$
     $=17(>0)$
Hence, $(3,-4)$ is outside the ellipse.

Let $5x^2+7y^2=140$, then Position of $(4,-3)$ relative to the ellipse is

  1. Inside the ellipse.

  2. Outside the ellipse.

  3. On the ellipse.

  4. None of the above.


Correct Option: B
Explanation:

Equation of ellipse : ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

putting point (4,3) in equation
     $=5\times { \left( 4 \right)  }^{ 2 }+7{ \left( -3 \right)  }^{ 2 }-140$
     $=80+63-140$
     $=3\left( >0 \right) $
Hence, point is outside the ellipse.

Let $\dfrac {(x-3) ^2}9+\dfrac {(y-4) ^2}{16}=1$ then   $(3,4)$ is 

  1. Inside the ellipse

  2. Outside the ellipse

  3. On the ellipse

  4. Centre of the ellipse


Correct Option: A,D
Explanation:

If equation of ellipse is $\dfrac { { \left( x-h \right)  }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { \left( y-k \right)  }^{ 2 } }{ { b }^{ 2 } } =1$,  centre $\left( h,k \right) $

for ellipse   $\dfrac { { \left( x-3 \right)  }^{ 2 } }{ 9 } +\dfrac { { \left( y-4 \right)  }^{ 2 } }{ 16 } =1$
            Centre of ellipse (3,4)
and centre is inside ellipse only.

Let $5x^2+7y^2=140$, then $(0,0)$ is: 

  1. Inside the ellipse

  2. On the ellipse

  3. Outside the ellipse

  4. Centre of the ellipse


Correct Option: A,D
Explanation:

Equation of ellipse    ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$

   Dividing both sides by $140$
           $\dfrac { { x }^{ 2 } }{ 28 } +\dfrac { { y }^{ 2 } }{ 20 } =1$
Comparing with $\dfrac { { \left( x-h \right)  }^{ 2 } }{ { a }^{ 2 } } +\dfrac { { \left( y-k \right)  }^{ 2 } }{ { b }^{ 2 } } =1$
          $(h,k)\ =\ (0,0)$
Hence (0,0) is centre of given ellipse and it inside the ellipse.

Let $5x^2+7y^2=140$, then $(\sqrt {14},\sqrt {10})$ is:

  1. Outside the ellipse

  2. Inside the ellipse

  3. On the ellipse

  4. Centre of the ellipse


Correct Option: C
Explanation:

          ${ 5x }^{ 2 }+{ 7y }^{ 2 }=140$          (equation of ellipse)

putting $\left( \sqrt { 14 } ,\sqrt { 10 }  \right) $ in equation
            $=5\times { \left( \sqrt { 14 }  \right)  }^{ 2 }+7\times { \left( \sqrt { 10 }  \right)  }^{ 2 }-140$
            $=70+70-140$
            $=0$
Hence, point lie on the ellipse.

If $P=(x, y), F _1=(3, 0), F _2=(-3, 0)$ and $  16x^2+25y^2=400$, then $PF _1+PF _2$ equals

  1. $8$

  2. $6$

  3. $10$

  4. $12$


Correct Option: C
Explanation:

Given equation is $16x^2+25y^2=400$
The ellipse can be written as, $\displaystyle \frac{x^2}{25}+\frac{y^2}{16}=1$
Here $a^2=25, b^2=16$,  but  $b^2=a^2(1-e^2)$
$\Rightarrow \dfrac {16}{25}=1-e^2$
$\Rightarrow e^2=1-\dfrac {16}{25}=\dfrac {9}{25} $
$ \Rightarrow e=\pm \dfrac {3}{5}$
Foci of the ellipse are $(+ae, 0)$ $=$ $ (\pm 3, 0)$, i.e., $F _1$ and $F _2$.
We have $PF _1+PF _2=2a=10$ for every point $P$ on the ellipse.

The position of the point $(1, 2)$ relative to the ellipse $2x^{2} + 7y^{2} = 20$ is

  1. outside the ellipse

  2. inside the ellipse but not at the focus

  3. on the ellipse

  4. at the focus


Correct Option: A
Explanation:

$f\left( x,y \right) ={ 2x }^{ 2 }+7{ y }^{ 2 }-20$

Point will be outside of ellipse if $f\left( 1,2 \right) >0$

on ellipse if $f\left( 1,2 \right) =0$

will be inside if $f\left( 1,2 \right) <0$

$ f\left( 1,2 \right) ={ 2\times 1 }^{ 2 }+7{ \times 2 }^{ 2 }-20=10$

Here we see that $f\left( 1,2 \right) >0$ so point will be outside of ellipse

So correct answer will be option A

The minimum distance of origin from the curve $\frac{a^2}{x^2}+\frac{b^2}{y^2}=1$ is $(a>0,b>0)$

  1. a-b

  2. a+b

  3. 2a+2b

  4. 2(a-b)


Correct Option: B
Explanation:
Let $(a sec\theta,b cosec \theta)$ be a point on the curve, then its diastance  from the origin
$=\sqrt{a^2 sec^2 \theta + b^2 cosec ^2 \theta}$
$\therefore f(\theta)=a^2 sec^2 \theta +b^2 cosec ^2 \theta$
$=a^2+a^2 tan ^2 \theta + b^2 + b^2 cot ^ 2 \theta$
$=a^2+b^2 + a^2 tan ^2 \theta + b^2 cot ^2 \theta$
$\geq a^2+b^2+2 \sqrt{a^2 b^2}=(a+b)^2$
$\therefore$ minimum value of $f(\theta)=(a+b)^2$
$\therefore$ minimum value of $\sqrt{a^2 sec^2 \theta + b^2 cosec^2 \theta }$ is $a+b$

If $a$ and $c$ positive real number and the ellipse $\dfrac { { x }^{ 2 } }{ { 4c }^{ 2 } } +\dfrac { { y }^{ 2 } }{ { c }^{ 2 } } =1$ has four distinet points in common with the circle ${ x }^{ 2 }+{ y }^{ 2 }=9{ a }^{ 2 }$, then

  1. $6ac+9{ a }^{ 2 }-2{ c }^{ 2 }>0$

  2. $6ac+9{ a }^{ 2 }-2{ c }^{ 2 }<0$

  3. $9ac-9{ a }^{ 2 }-2{ c }^{ 2 }<0$

  4. $9ac-9{ a }^{ 2 }-2{ c }^{ 2 }>0$


Correct Option: C

An ellipse is inscribed in a circle and a point within the circle is chosen at random. If the probability that this point lies outside the ellipse is $2/3$ then the eccentricity of the ellipse is:

  1. $\dfrac{2\sqrt{2}}{3}$

  2. $\dfrac{\sqrt{5}}{3}$

  3. $\dfrac{8}{9}$

  4. $\dfrac{2}{3}$


Correct Option: A