Tag: rate of chemical reaction

Questions Related to rate of chemical reaction

Inversion of a sugar folllows first order rate equation which can be followed by nothing the change in rotation of the plane of polarization of light in the polarimeter. If $r _{\infty,}:r _t:and:r _0$ are the rotations at
 $t\,=\,\infty,t\,=\,t:and:t\,=\,0,$ then, first order reaction can be written as:

  1. $\;k\,=\,\displaystyle\frac{1}{t}log\displaystyle\frac{r _t-r _{\infty}}{r _0-r _{\infty}}$

  2. $\;k\,=\,\displaystyle\frac{1}{t}\,ln\displaystyle\frac{r _0-r _{\infty}}{r _t-r _0}$

  3. $\;k\,=\,\displaystyle\frac{1}{t}\,ln\displaystyle\frac{r _{\infty}-r _0}{r _{\infty}-r _t}$

  4. None of these


Correct Option: C
Explanation:

$\underset{d-Sucrose}{C _{12}H _{22}O _{11}}+H _2O\xrightarrow{H+}\underset{d-Glucose}{C _6H _{12}O _6}+\underset{l-Fructose}{C _6H _{12}O _6}$


Initially               a                Excess                  0                0 
After time t        a-x            Constant                x                x
At infinity           0               Constant               a                 a
If $r _0,r _t$ and $r _{\infty}$ be the observed angle of rotations of the sample at zero times, times $t$ and infinity respectively, and $k _1,k _2$ and $k _3$ proportionate in terms of sucrose,glucose and fructose, respectively.
Then,
$r _0=k _1a$
$r _t=k _1(a-x)+k _2x+k _3x$
$r _{\infty}=k _2a+k _3a$
From these equations it can be shown that
$\dfrac{a}{a-x}=\dfrac{r _0-r _{\infty}}{r _t-r _{\infty}}$
So, the expression for the rate constant rate of this reaction in terms of the optical rotational data may be 
put as $k=\dfrac{2.303}{t}\log \dfrac{r _0-r _{\infty}}{r _t-r _{\infty}}$

In the following reaction $2H _2O _2\rightarrow2H _2O+O _2$ rate of formation of $O _2$ is 3.6 M min$^{-1}$.


(a) What is rate of formation of $H _2O\ ?$        
(b) What is rate of disappearance of $H _2O _2$?

  1. (i) $7.2$ mol litre$^{-1}$ min$^{-1},$ (ii) $7.2$ mol litre$^{-1}$ min$^{-1}$

  2. (i) $3.6$ mol litre$^{-1}$ min$^{-1},$ (ii) $3.6$ mol litre$^{-1}$ min$^{-1}$

  3. (i) $14.4$ mol litre$^{-1}$ min$^{-1},$ (ii) $14.4$ mol litre$^{-1}$ min$^{-1}$

  4. None of these


Correct Option: A
Explanation:

$ (a)2H _{2}O _{2}\rightarrow 2H _{2}O+O _{2} $

We know, $ \dfrac{-1}{2}\dfrac{d[H _{2}O _{2}]}{dt} = \dfrac{-1}{2}\dfrac{d[H _{2}O]}{dt} = \dfrac{d[O _{2}]}{dt} $

$ \dfrac{d[H _{2}O]}{dt} = 2\dfrac{d[O _{2}]}{dt} = 2\times 3.6\,M\,min^{-1} $

$ \dfrac{d[H _{2}O]}{dt} = 7.2\,M\,min^{-1} $

$(b) \dfrac{-d[H _{2}O _{2}]}{dt} = \dfrac{2}{2}\dfrac{d[H _{2}O]}{dt} = \dfrac{-d[H _{2}O _{2}]}{dt} = 7.2\,M\,min^{-1} $ 

Option A is correct.

Dinitropentaoxide decomposes as follows :
    $N _2O _5:(g)\rightarrow2:NO _2(g)+\frac{1}{2}O _2:(g)$
Given that         

$ _d:[N _2O _5]:/:dt=k _1[N _2O _5]$
$d:[NO _2]:/:dt=k _2[N _2O _5]$
$d:[O _2]:/:dt=k _3[N _2O _5]$
What is the relation between $k _1,:k _2:and:k _3$?

  1. $2k _1=k _2=4k _3$

  2. $2k _2=k _1=4k _3$

  3. $2k _3=k _2=4k _1$

  4. $2k _1=k _2=4k _2$


Correct Option: A
Explanation:

$\displaystyle N _{2}O _{5}:(g)\rightarrow2:NO _{2}:(g)+\frac{1}{2}O _{2}:(g)$
$\displaystyle -d:[N _{2}O _{5}]/\mathrm{d} t=k _{1}[N _{2}O _{5}]$
$\displaystyle d:[NO _{2}]/\mathrm{d} t=k _{2}[N _{2}O _{5}]$
$\displaystyle d[O _{2}]/\mathrm{d} t=k _3[N _{2}O _{5}]$
$-\displaystyle \frac{\mathrm{d} N _{2}O _{5}}{\mathrm{d} t}=\frac{1}{2}\frac{\mathrm{d} NO _{2}}{\mathrm{d} t}
=2\frac{\mathrm{d} O _{2}}{\mathrm{d} t}$
$\displaystyle k _{1}=\frac{k _{2}}{2}=2k _{3}$
$\displaystyle 2k _{1}=k _{2}=4k _{3}$

The following data were obtained in experiment on inversion of cane sugar.
Time (minutes)         0        60        120      180      360     $\infty $
Angle of rotation  +13.1   +11.6   +10.2   +9.0   +5.87  -3.8
   (degree)
Determine total time ?

  1. 966 min

  2. 483 min

  3. 1932 min

  4. None of these


Correct Option: A
Explanation:

The integrated rate law expression for the inversion of can sugar (assuming first order kinetics) is as shown.
$\displaystyle k = \frac {2.303}{t} log \frac {r _0 - r _{\infty}}{r _t - r _{\infty}} $
For 60 minutes
$\displaystyle k = \frac {2.303}{60} log \frac {13.1 - (-3.8)}{11.6 - (3.8)} = 0.001549 $
For 120 minutes
$\displaystyle k = \frac {2.303}{120} log \frac {13.1 - (-3.8)}{10.2 - (3.8)} = 0.001569 $
For 180 minutes
$\displaystyle k = \frac {2.303}{180} log \frac {13.1 - (-3.8)}{9.0 - (3.8)} = 0.001544 $
For 360 minutes
$\displaystyle k = \frac {2.303}{360} log \frac {13.1 - (-3.8)}{5.87 - (3.8)} = 0.001551 $
Since, the value of k is constant, the reaction follows first order reaction.
The average value of k is $\displaystyle  \frac {0.001549+0.001569+0.001544+0.001551}{4} = \frac {0.0062135}{4} = 0.001553 : min^{-1}$
To determine the total time, substitute $\displaystyle r _t = 0 $ in the above expression.
$\displaystyle t = \frac {2.303}{k} log \frac {r _0 - r _{\infty}}{r _t - r _{\infty}} $
$\displaystyle t = \frac {2.303}{0.001553} log \frac {13.1 - (-3.8)}{0 - (-3.8)} = 966 : min $

Derive an expression for the Rate (k) of reaction :
$2N _{2}O _{5}(g)\rightarrow 4NO _{2}(g)+O _{2}(g)$


With the help of following mechanism:

$N _{2}O _{5}\overset{K _a}{\rightarrow}NO _{2}+NO _{3}$
$NO _{3}+NO _{2}\overset{K _{-a}}{\rightarrow}N _{2}O _{5}$
$NO _{2}+NO _{3}\overset{K _b}{\rightarrow}NO _{2}+O _{2}+NO$
$NO+NO _{3}\overset{K _c}{\rightarrow}2NO _{2}$

  1. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+2k _{b}}[N _{2}O _{5}]$

  2. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}-2k _{b}}[N _{2}O _{5}]$

  3. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+k _{b}}[N _{2}O _{5}]$

  4. $\displaystyle Rate=\frac{k _{a}\times k _{b}}{2k _{-a}-2k _{b}}[N _{2}O _{5}]$


Correct Option: A
Explanation:

Rate $\displaystyle = k _b[NO _2][NO _3] $ .....(1)

But $\displaystyle \dfrac {[NO _2][NO _3]}{[N _2O _5]}=  \dfrac {K _a}{K _{-a} + 2k _b}$

Hence $\displaystyle [NO _2][NO _3]  =\dfrac {K _a}{K _{-a}+2k _b} [N _2O _5]$......(2)

Substitute equation (2) in equation (1):

$\displaystyle \displaystyle Rate=\frac{k _{a}\times k _{b}}{k _{-a}+2k _{b}}[N _{2}O _{5}]$

The rate constant for the reaction, ${ N } _{ 2 }{ O } _{ 5 }\left( g \right) \longrightarrow 2N{ O } _{ 2 }\left( g \right) +\dfrac { 1 }{ 2 } { O } _{ 2 }\left( g \right) $, is $2.3\times { 10 }^{ -2 }\ { sec }^{ -1 }$. Which equation given below describes the change of $\left[ { N } _{ 2 }{ O } _{ 5 } \right] $ with time, ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }$ and ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }$ corresponds to concentration of ${ N } _{ 2 }{ O } _{ 5 }$ initially and time $t$ respectively?

  1. ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t }{ e }^{ kt }$

  2. $\log _{ e }{ \dfrac { { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 } }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t } } } =kt$

  3. $\log _{ 10 }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t } } =\log _{ 10 }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 } } -kt$

  4. ${ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ t }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right] } _{ 0 }+kt$


Correct Option: A,B,C
Explanation:

${ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }{ e }^{ -kt }\ { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 }={ \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t }{ e }^{ kt }\ \ln { \left( \cfrac { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 } }{ { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t } }  \right)  } ={ e }^{ kt }\ \ln { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ t } } =\ln { { \left[ { N } _{ 2 }{ O } _{ 5 } \right]  } _{ 0 } } -kt$