Tag: rate of chemical reaction

Questions Related to rate of chemical reaction

The rate constant, $\mathrm{k}$ for the reaction $\displaystyle \mathrm{N} _{2}\mathrm{O} _{5}(\mathrm{g})\rightarrow 2\mathrm{N}\mathrm{O} _{2}(\mathrm{g})+\frac{1}{2}\mathrm{O} _{2}(\mathrm{g})$ ls $2.3\times 10^{-2}\mathrm{s}^{-1}$. Which equation given below describes the change of $[\mathrm{N} _{2}\mathrm{O} _{5}]$ with time?

$[\mathrm{N} _{2}\mathrm{O} _{5}] _{0}$ and $[\mathrm{N} _{2}\mathrm{O} _{5}] _{\mathrm{t}}$ correspond to concentration of $\mathrm{N} _{2}\mathrm{O} _{5}$ initially and at time $\mathrm{t}$.

  1. $[N _{2}O _{5}] _{t}=[N _{2}O _{5}] _{0}+kt$

  2. $[N _{2}O _{5}] _{0}=[N _{2}O _{5}] _{t}e^{kt}$

  3. $log _{10}[N _{2}O _{5}] _{t}=log _{10}[N _{2}O _{5}] _{0}-kt$

  4. $ln\dfrac{[N _{2}O _{5}] _{0}}{[N _{2}O _{5}] _{t}}=kt$


Correct Option: D
Explanation:

The decomposition of  $\mathrm{N} _{2}\mathrm{O} _{5}$ follows first order kinetics.


The integrated rate law expression is $ln\dfrac{[N _{2}O _{5}] _{0}}{[N _{2}O _{5}] _{t}}=kt$.

It can also be represented as $log _{10}[N _{2}O _{5}] _{t}=log _{10}[N _{2}O _{5}] _{0}-\dfrac {kt} {2.303}.$


It can also be represented as $[N _{2}O _{5}] _{t}=[N _{2}O _{5}] _{0}e^{-kt}.$

For the reaction ; $2H _2O _2(aq)\rightarrow 2H _2O(l)+O _2(g)$, rate of decomposition for $H _2O _2=k[H _2O _2]^2$
  1. True

  2. False


Correct Option: B
Explanation:

For $2H _2O _2(aq)\rightarrow 2H _2O(l)+O _2(g)$ rate of decomposition for $H _2O _2=k[H _2O _2]$. It is a first order reaction.  It proceeds through following mechanism.

$\displaystyle H _2O _2 \xrightarrow {slow} H _2O + O $

$\displaystyle  O + O \xrightarrow {fast} O _2$

For the reaction; $2N _2O _5\rightarrow 4NO _2+O _2$, rate and rate constant are $1.02\times 10^{-4} M sec^{-1}$ and $3.4\times 10^{-5}  sec^{-1}$ respectively, then concentration of $N _2O _5$, at that time will be:

  1. $1.732\ M$

  2. $3\ M$

  3. $1.02\times 10^{-4} M$

  4. $3.5\times 10^{5} M$


Correct Option: B
Explanation:
From the unit of rate constant we can identify the reaction as first order.

As we know,
$r=K[N _2O _5]$

$\therefore [N _2O _5]=\frac {r}{K}=\frac {1.02\times 10^{-4}}{3.4\times 10^{-5}}=3M$.

For the first order reaction:-
$2N _2O _5(g)\rightarrow 4NO _2(g)+O _2(g)$

  1. the concentration of the reactant decreases exponentially with time

  2. the half-life of the reaction decreases with increasing temperature

  3. the half-life of the reaction depends on the initial concentration of the reactant

  4. the reaction proceeds to 99.6% completion in eight half-life duration


Correct Option: A,B,D
Explanation:

Option (A),(B),(D) are correct.
(C) : The half-life of the reaction is independent of the initial concentration of the reactant. Half-life for first order reaction is :$t _{1/2} = 0.693/k$
A first-order reaction has a rate proportional to the concentration of one reactant.
First-order rate constants have units of $sec^{-1}$. In other words, a first-order reaction has a rate law in which the sum of the exponents is equal to 1. 

Among the following unimolecular reaction is

  1. $C _{12}H _{22}O _{11}+H _2O \rightarrow C _6H _{12}O _6+C _6H _{12}O _6$

  2. $2NO+O _2 \rightarrow 2NO _2$

  3. $2H _2O _2 \rightarrow 2H _2O+O _2$

  4. $2NO _2+F _2 \rightarrow 2NO _2F$


Correct Option: A

The reaction; $N _2O _5(g) \longrightarrow 2NO _2(g)+\frac {1}{2}O _2(g)$ is of first order for $N _2O _5$ with rate constant $6.2\times 10^{-4}s^{-1}$. What is the value of rate of reaction when $[N _2O _5]=1.25 \ mol L^{-1}$?

  1. $5.15\times 10^{-5}mol L^{-1}s^{-1}$

  2. $6.35\times 10^{-3}mol L^{-1}s^{-1}$

  3. $7.75\times 10^{-4}mol L^{-1}s^{-1}$

  4. $3.85\times 10^{-4}mol L^{-1}s^{-1}$


Correct Option: C
Explanation:

As we know,
$r=K[N _2O _5]=6.2\times 10^{-4}\times 1.25=7.75\times 10^{-4} mol L^{-1} s^{-1}$.

The concentration of acetate ions in $1 M$ acetic acid $(K _{a} = 2 \times 10^{-5})$ solution containing $0.1 M - HCl$ is

  1. $2 \times 10^{-1}$

  2. $2 \times 10^{-3}$

  3. $2 \times 10^{-4}$

  4. $4.4 \times 10^{-3}$


Correct Option: C

The hydrolysis of an ester was carried out with 0.1 M $H _2SO _4$ and 0.1 M HCl separately. Which of the following expressions between the rate consists is expected? The rate expression being rate = $k[H^{\oplus}][ester]$ 

  1. $k _{HCl}\, =\, k _{H _2SO _4}$

  2. $k _{HCl}\, >\, k _{H _2SO _4}$

  3. $k _{HCl}\, <\, k _{H _2SO _4}$

  4. $k _{ H _2SO _4}\, =\, k _{HCl}$


Correct Option: B
Explanation:

$[H _2SO _4]\, =\, 0.1\, M\, =\, 0.1\, \times\, 2\, =\, 0.2 N$

$[HCl]$ = $0.1 N$

In case of $[H _2SO _4]$ 

$r _1\, =\, k[H^{\oplus}][Ester]$ 

$\displaystyle k _{H _2SO _4}\, = \frac{r _1}{2\, N\, \times\, [Ester]}$ 

In case of HCl, $r _1\, =\, k[H^{\oplus}]\, [Ester]$ 

$\displaystyle k _{HCl}\, =\, \frac{r _2}{1\, N\, [Ester]}$ 

Hence $K _{HCl}\, >\, K _{H _2SO _4}$

$2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$

If $\displaystyle -\, \frac{d[N _2O _5]}{dt}\, =\, k _1[N _2O _5]$

$\displaystyle \frac{d[NO _2]}{dt}\, =\, k _2[N _2O _5]$

$\displaystyle \frac{d[O _2]}{dt}\, =\, k _3[N _2O _5]$
What is the relation between $k _1, k _2\, and\, k _3$ ?

  1. $k _1\, =\, k _2\, =\, k _3$

  2. $2k _1\, =\, k _2\, =\, 4k _3$

  3. $2k _1\ =\, 4k _2\, =\, k _3$

  4. None


Correct Option: B
Explanation:

As we know,
for a reaction:
$2N _2O _5\, \rightarrow\, 4NO _2\, +\, O _2$
$\displaystyle -\, \frac{1}{2}\, \frac{d[N _2O _5]}{dt}\, =\, \frac{1}{4}\, \frac{d[NO _2]}{dt}\, =\, \frac{d[O _2]}{dt}$
So
$2k _1\, =\, k _2\, =\, 4k _3$

The inversion of cane sugar proceeds with the half-life of 500 min at pH 5 for any concentration of sugar. However, if pH = 6, the half life changes to 50 min. The rate law expression for the sugar inversion can be written as:

  1. $r\, =\, k[sugar]^2[H]^6$

  2. $r\, =\, k[sugar]^1[H]^0$

  3. $r\, =\, k[sugar]^0[H^{\oplus}]^6$

  4. $r\, =\, k[sugar]^0[H^{\oplus}]^1$


Correct Option: B
Explanation:

Given,
Since $t _{1/2}$ does not depends upon the sugar concentration means it is first order w.r.t [sugar]
$\therefore t _{1/2}\, \propto\, [sugar]^{1}$
$t _{1/2}\, \times\, a^{n\, -\, 1}\, =\, k$
$\displaystyle \frac{(t _1/2) _1}{(t _{1/2) _2}}\, =\, \frac{[H^{\oplus}] _1^{1-n}}{[H^{\oplus}] _2^{1-n}}$

$\displaystyle \frac{500}{50}\, =\, \left ( \frac{10^{-5}}{10^{-6}}\right )^{1-n}$

10 = $(10)^{1-n}\, \Rightarrow\, n\, =\, 0$