Tag: operations on rational numbers

Questions Related to operations on rational numbers

Arrange in ascending order $\sqrt [ 6 ]{ 7 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } $

  1. $\sqrt [ 4 ]{ 3 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 6 ]{ 7 } $

  2. $\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } ,\sqrt [ 6 ]{ 7 } $

  3. $\sqrt [ 6]{ 7 } ,\sqrt [ 12 ]{ 48 } ,\sqrt [ 4 ]{ 3 } $

  4. $None\ of\ these$


Correct Option: A

The ascending order of minimum values of the function  $P:\sin ^{ -1 }{ x } -\cos ^{ -1 }{ x } $, $Q=\tan ^{ -1 }{ x } -\cot ^{ -1 }{ x } $, $R=\sec ^{ -1 }{ x } -\csc ^{ -1 }{ x } $

  1. P, Q, R

  2. P, R, Q

  3. Q, P, R

  4. Q, R, P


Correct Option: A

The value of $1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$ is?

  1. $\dfrac{121}{108}$

  2. $\dfrac{3}{2}$

  3. $\dfrac{31}{2}$

  4. $\dfrac{91}{81}$


Correct Option: D
Explanation:

$1+\dfrac{1}{4\times 3}+\dfrac{1}{4\times 3^2}+\dfrac{1}{4\times 3^3}+\dfrac{1}{4\times 3^4}$


$=1+\dfrac{1}{12}+\dfrac{1}{36}+\dfrac{1}{108}+\dfrac{1}{324}$


$=\dfrac{324+27+9+3+1}{324}$

$=\dfrac{364}{324}$

$=\dfrac{91}{81}$

Hence, the answer is $\dfrac{91}{81}.$

The ascending order of $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $ is

  1. $\sqrt { 2 } ,\sqrt [ 3 ]{ 4 } ,\sqrt [ 4 ]{ 6 } $

  2. $\sqrt { 2 } ,\sqrt [ 4 ]{ 6 } ,\sqrt [ 3 ]{ 4 } $

  3. $\sqrt [ 3 ]{ 4 }, \sqrt {2},\sqrt [ 4 ]{ 6 } $

  4. $\sqrt [ 4 ]{ 6 },\sqrt [ 3 ]{ 4 } ,\sqrt {2}$


Correct Option: A

Find the rational numbers between the following numbers. 

$-0.2$ and $-0.22$.

  1. $-0.210 > -0.211 > -0.312 > -0.213 > -0.314 > 0.220$

  2. $-0.210 > -0.211 > -0.212 > -0.213 > -0.314 > 0.220$

  3. $-0.210 > -0.211 > -0.312 > -0.213 > -0.214 > 0.220$

  4. $-0.210 > -0.211 > -0.212 > -0.213 > -0.214 > 0.220$


Correct Option: D
Explanation:

Rational number between two numbers $ a $ and $ b = \dfrac {(a +

b)}{2} $

So,
a rational number between $ -0.2 $ and $ - 0.22 = \dfrac {(-0.2 - 0.22)}{2} = -0.21 $

Now, another rational number
between $ -0.21 $ and $ - 0.22 = \dfrac {(-0.21 - 0.22)}{2} = -0.215 $

rational number between $ -0.215 $ and $ - 0.21 = \dfrac {(-0.215 - 0.21)}{2} = -0.212 $ 

rational number between $ -0.215 $ and $ - 0.212 = \dfrac {(-0.215 - 0.212)}{2} = -0.213 $ 

rational number between $ -0.215 $ and $ - 0.213 = \dfrac {(-0.215 - 0.213)}{2} = -0.214 $ 

Similarly,
rational numbers between $ -0.2 $ and $ - 0.22 $ are $-0.210, -0.211 , -0.212, -0.213 , -0.214$ etc

Find the five rational numbers between $-5$ and $-6$

  1. $-5.1 ,-5.2 , -3.3 , -5.4 , -5.5  $

  2. $-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

  3. $-5.1 , -6.2 , -5.3 , -5.4 , -5.5 $

  4. $-6.1 , -5.2 , -5.3 , -5.4 , -5.5 $


Correct Option: B
Explanation:
$−5>(−5−0.1)=−5.1>−5.2=(−5.1−0.1)>−5.3=(−5.2−0.1)>−5.4\\=(−5.3−0.1)>−5.5=(−5.4−0.1)>...>−6$

$-5>−5.1>−5.2>−5.3>−5.4>−5.5...>−6$

The five rational numbers between $−5$ and $−6$
$-5.1 ,-5.2 , -5.3 , -5.4 , -5.5 $

Which one is in the descending order in the following?

  1. $\displaystyle 6/7, 4/5, 3/4, 7/9$

  2. $\displaystyle 6/7, 4/5, 7/9, 3/4$

  3. $\displaystyle 3/4, 7/9, 4/5, 6/7$

  4. $\displaystyle 7/9, 3/4, 6/7, 4/5$


Correct Option: B
Explanation:
Here we have four factors $\dfrac{3}{4},  \dfrac{4}{5},   \dfrac{6}{7},   \dfrac{7}{9}$
LCM of 4, 5, 7 and 9 is 1260
So, 
$\dfrac{3}{4} \times\dfrac{315}{315}$ = $\dfrac{945}{1260}$

$\dfrac{4}{5} \times\dfrac{252}{252}$ = $\dfrac{1008}{1260}$

$\dfrac{6}{7} \times\dfrac{180}{180}$ = $\dfrac{1080}{1260}$

$\dfrac{7}{9} \times\dfrac{140}{140}$ = $\dfrac{980}{1260}$
As, 
1080 > 1008 > 980 > 945
So, $\dfrac{6}{7} > \dfrac{4}{5} >  \dfrac{7}{9} >  \dfrac{3}{4}$

Arrange in descending order:
$1,00,000; 99,999; 9,90,000; 1,10,000$

  1. $1,00,000; 99,999; 9,90,000; 1,10,000$

  2. $ 1,10,000; 9,90,000; 99,999; 1,00,000$

  3. $ 9,90,000; 99,999; 1,10,000; 1,00,000$

  4. $ 9,90,000; 1,10,000; 1,00,000; 99,999$


Correct Option: D
Explanation:

Comparing digits at lakh's place followed by ten thousand's, thousand's, hundred's, ten's and one's place,


We can arrange the given numbers in descending order as 
$9,90,000;\ 1,10,000;\ 1,00,000;\ 99,999$

Arrange the following in descending order.
$\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$, $\dfrac{9}{8}$ 

  1. $\dfrac{7}{2}$, $\dfrac{9}{8}$, $\dfrac{3}{2}$, $\dfrac{9}{5}$, $\dfrac{5}{2}$

  2. $\dfrac{7}{2}$, $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$

  3. $\dfrac{5}{2}$, $\dfrac{9}{5}$, $\dfrac{3}{2}$, $\dfrac{9}{8}$, $\dfrac{7}{2}$

  4. $\dfrac{9}{8}$, $\dfrac{5}{2}$, $\dfrac{3}{2}$, $\dfrac{7}{2}$, $\dfrac{9}{5}$


Correct Option: B
Explanation:

$\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2},\cfrac{9}{5},\cfrac{9}{8}$

We know that the number with largest denominator is the smallest one.
And among $\cfrac{5}{2},\cfrac{3}{2},\cfrac{7}{2}$ the one with largest numerator is the largest one.
Among $\cfrac{9}{5}$ and $\cfrac{3}{2},$ $\cfrac{9}{5}$ is larger.
Hence descending order is $\cfrac { 7 }{ 2 } ,\cfrac { 5 }{ 2 } ,\cfrac { 9 }{ 5 } ,\cfrac { 3 }{ 2 } ,\cfrac { 9 }{ 8 }.$

Milk is sold at $Rs\ 10\dfrac {3}{4}$ per liter, Find the cost of $6\dfrac {2}{5}$ liters of milk.

  1. $Rs \,107 \dfrac {1}{5}$

  2. $Rs \, 65 \dfrac {2}{5}$

  3. $Rs \, 103 \dfrac {1}{5}$

  4. $Rs \, 68 \dfrac {4}{5}$


Correct Option: D
Explanation:

Price$=Rs\ 10\dfrac {3}{4}=Rs.\cfrac{43}{4}$ per liter


Price of $6\dfrac {2}{5} l=\cfrac{32}{5}l=Rs.\cfrac{43}{4}\times \cfrac{32}{5}=Rs.\cfrac{344}{5}=Rs.68\cfrac{4}{5}$