Tag: operations on rational numbers

Questions Related to operations on rational numbers

There are 50 numbers Each numbers is subtracted from 53 and the mean of the numbers so obtained is found to be -3.5 The mean of the given numbers is 

  1. $48.9$

  2. $49.5$

  3. $52.5$

  4. $56.5$


Correct Option: B
Explanation:

$\Rightarrow$   Total observation is $50$

$\Rightarrow$  Let sum of $50$ number be $x$
$\therefore$    $\dfrac{x-(50\times 53)}{50}=-3.5$
$\therefore$    $x-2650=-3.5\times 50$
$\therefore$    $x-2650=-175$
$\therefore$    $x=-175+2650$
$\therefore$    $x=2475$
$\Rightarrow$   Original mean = $\dfrac{2475}{50}=49.5$

Write any $10$ rational numbers between $0\;and\;2$.

  1. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{88}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  2. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{21}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  3. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{35}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$

  4. $\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10}$


Correct Option: D
Explanation:

Let us write $0$ as $\displaystyle\frac{0}{10}\;and\;2$ as $\displaystyle\frac{20}{10}$.

The rational numbers between these are


$\displaystyle\frac{1}{10},\,\displaystyle\frac{2}{10},\,\displaystyle\frac{3}{10},\,\displaystyle\frac{4}{10},\,\displaystyle\frac{5}{10},\,\displaystyle\frac{6}{10},\,\displaystyle\frac{7}{10},\,\displaystyle\frac{8}{10},\,\displaystyle\frac{9}{10},\,\displaystyle\frac{10}{10},\,\displaystyle\frac{11}{10},\,\displaystyle\frac{12}{10},\,\displaystyle\frac{13}{10},\,\displaystyle\frac{14}{10},\,\displaystyle\frac{15}{10},\,\displaystyle\frac{16}{10},\,\displaystyle\frac{17}{10},\,\displaystyle\frac{18}{10},\,\displaystyle\frac{19}{10}$

Choose the rational number which does not lie between rational numbers $ \displaystyle \frac{3}{5} $ and $ \displaystyle \frac{2}{3} $ :

  1. $ \displaystyle \frac{46}{75} $

  2. $ \displaystyle \frac{47}{75} $

  3. $ \displaystyle \frac{49}{75} $

  4. $ \displaystyle \frac{50}{75} $


Correct Option: D
Explanation:

For $\dfrac{3}{5}$ multiply numerator and denominator by $15$ to make denominator $75$ that comes into $\dfrac{45}{75}.$
Similarly doing for second then we have $\dfrac{50}{75}.$
Now question is asking about rational lying between them.

So, we need to check the numerator only that lies in between $45$ and $50$ or not.
Clearly $D$ is correct.

Find five rational numbers between $1$ and $2.$

  1. $\dfrac {1}{10}, \dfrac {2}{10}, \dfrac {3}{10}, \dfrac {4}{10}, \dfrac {5}{10}$

  2. $\dfrac {1}{5}, \dfrac {2}{5}, \dfrac {3}{5}, \dfrac {4}{5}, \dfrac {5}{5}$

  3. $\dfrac {1}{2}, \dfrac {1}{3}, \dfrac {1}{4}, \dfrac {1}{5}, \dfrac {1}{6}$

  4. $\dfrac {8}{7}, \dfrac {9}{7}, \dfrac {10}{7}, \dfrac {11}{7}, \dfrac {12}{7}$


Correct Option: D
Explanation:

The given rational numbers are $1$ and $2$.

Let us multiply both the numbers by $\dfrac {7}{7}$.

$1\times \dfrac {7}{7} = \dfrac {7}{7}$ and $2\times \dfrac {7}{7} = \dfrac {14}{7}$.

Thus, five rational numbers between $\dfrac {7}{7} = 1$ and $\dfrac {14}{7} = 2$ are $\dfrac {8}{7}, \dfrac {9}{7}, \dfrac {10}{7}, \dfrac {11}{7}, \dfrac {12}{7}$.

Choose the rational number which does not lie between rational numbers $-\cfrac {2}{5}$ and $-\cfrac {1}{5}$

  1. $-\dfrac {1}{4}$

  2. $-\dfrac {3}{10}$

  3. $\dfrac {3}{10}$

  4. $-\dfrac {7}{20}$


Correct Option: C
Explanation:

Since the given rational numbers $-\dfrac {2}{5}$ and $-\dfrac {1}{5}$ are negative rational numbers, therefore, none of the positive rational number can lie between them.


Hence, the rational number $\dfrac {3}{10}$ does not lie between the rational numbers $-\dfrac {2}{5}$ and $-\dfrac {1}{5}$ 

Identity the rational number that does not lie between  $ \cfrac{3}{5}$ and $ \cfrac{2}{3}$.

  1. $ \cfrac{46}{75}$

  2. $ \cfrac{47}{75}$

  3. $ \cfrac{49}{75}$

  4. $ \cfrac{50}{75}$


Correct Option: D
Explanation:

Changing the fractions to denominator $=75$


$\dfrac{3}{5} = \dfrac{45}{75}$

$\dfrac{2}{3} = \dfrac{50}{75}$

$\therefore \dfrac{50}{75}$ doesn't lie in between $\dfrac{3}{5}$ and $\dfrac{2}{3}$

Rational number between $\dfrac{3}{8}$ and $\dfrac{7}{12}$ are 

  1. $\dfrac{3}{8},\dfrac{41}{96},\dfrac{23}{48},\dfrac{7}{12}$

  2. $\dfrac{3}{8},\dfrac{41}{196},\dfrac{23}{48},\dfrac{7}{12}$

  3. $\dfrac{3}{8},\dfrac{41}{96},\dfrac{23}{148},\dfrac{7}{12}$

  4. None of the above.


Correct Option: A