Tag: electromagnetic induction

Questions Related to electromagnetic induction

If $N$ is the number of turns in a circular coil then the value of self inductance varies as

  1. ${N}^{0}$

  2. $N$

  3. ${N}^{2}$

  4. ${N}^{-2}$


Correct Option: B
Explanation:

Self inductance depend on the number of turns in a coils $L \propto N$.

A magnetic field of $2\times {10}^{-2}T$ acts at right angles to a coil of area $100{cm}^{2}$ with $50$ turns. The average emf induced in the coil is $0.1V$. When it is removed from the field in $t$ second, the value of $t$ is

  1. $10s$

  2. $0.1s$

  3. $0.01s$

  4. $1s$


Correct Option: B
Explanation:

$e=\cfrac { -\left( { \phi  } _{ 2 }-{ \phi  } _{ 1 } \right)  }{ t } =\cfrac { -\left( 0-NBA \right)  }{ t } =\cfrac { NBA }{ t } $
$ \therefore \quad t=\cfrac { NBA }{ e } =\cfrac { 50\times 2\times { 10 }^{ -2 }\times { 10 }^{ -2 } }{ 0.1 } \quad t=0.1s$

The inductive reactance of a coil of $0.2H$ inductance at a frequency of $60Hz$ is:

  1. $7.54\Omega $

  2. $0.754 \Omega $

  3. $75.4\Omega $

  4. $7.54\times { 10 }^{ -3 }\Omega $


Correct Option: C
Explanation:

${ X } _{ L }=\omega L=2\pi fL$
$=2\times \cfrac { 22 }{ 7 } \times 60\times 0.2=75.4\Omega $

The SI unit of inductance, the henry, can be written as :

  1. Weber ampere$^{-1}$

  2. Volt - s ampere$^{-1}$

  3. Joule ampere$^{-1}$

  4. ohm $s^{-1}$


Correct Option: B
Explanation:

$V=L\dfrac{di}{dt}$

So the unit $L=\dfrac{Vdt}{di}$
so SI unit of L is $Volt-s\,ampere^{-1}$

A long solenoid with length $l$ and a radius $R$ consists of $N$ turns of wire,Neglecting the end effects, find the self-inductance.

  1. $\mu _0N^2\pi R^2/l$

  2. $\mu _0N\pi R^2/l$

  3. $\mu _0N^2\pi R^3l$

  4. $\mu _0N^3\pi R^2l$


Correct Option: A
Explanation:

Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length


Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Hence, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Answer-(A)

If cross section area and length of a long solenoid are increased 3 times then its self-inductance will be changed how many times-

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A$

$\implies E=\dfrac{\mu _{o}N^2 A}{l}i=Li$
                                                                                    where $L$=self inductance
   
$\implies L=\dfrac{\mu _oN^2A}{l}$

Hence, $L\propto \dfrac{A}{l}$

Hence, on increasing both $A$ and $l$ three times,

 $L$ will remain the same.

Hence, answer-(A)

Self inductance of a long solenoid depends upon following(s)-

  1. number of turns

  2. radius of solenoid

  3. length of solenoid

  4. none of these


Correct Option: A,B,C
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L$ depends on $N$,  $R$ and $l$.

Answer-(A),(B),(C)

Self-Inductance of a Long Solenoid is proportional to(where $r$ is radius of solenoid)-

  1. $r$

  2. $r^2$

  3. $r^3$

  4. does not depend upon $r$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Answer-(B)

Area of a long solenoid is doubled.So how many times we have to increase its length to keep its self inductance constant-

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A$

$\implies E=\dfrac{\mu _{o}N^2A}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
$\implies L=\dfrac{\mu _o N^2A}{l}$

$\implies L\propto \dfrac{A}{l}$

The length of solenoid should be doubled also on doubling the area to keep $L$ constant.

Answer-(B)

If radius of long solenoid is doubled, then its self inductance will be :

  1. same

  2. doubled

  3. trippled

  4. quadrupled


Correct Option: D
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Hence, on doubling radius, $L$ becomes 4 times.

Answer-(D)