Tag: electromagnetic induction

Questions Related to electromagnetic induction

A current carrying wire produces a magnetic field in its surrounding space.
The S.I. unit of magnetic flux density is 

  1. Henry

  2. Tesla

  3. $AM^2$

  4. A-m


Correct Option: B
Explanation:

The SI unit of Magnetic Flux density is $ Weber/m^2 $ which is also called Tesla.

The dimensional formula of magnetic flux is ___________.

  1. $\left[ M{ L }^{ 2 }{ T }^{ -2 }{ A }^{ -1 } \right] $

  2. $\left[ M{ L }^{ 2 }{ T }^{ -3 }{ A }^{ -1 } \right] $

  3. $\left[ { M }^{ -1 }{ L }^{ -2 }{ T }^{ 2 }{ A }^{ 1 } \right] $

  4. $\left[ M{ L }^{ 3 }{ T }^{ -2 }{ A }^{ -1 } \right] $


Correct Option: A
Explanation:

Dimensions of ${ \phi  } _{ B }=$ Unit of $B\times $ Unit of $A$
$=\dfrac { newton }{ ampere-metre } \times { metre }^{ 2 }=\dfrac { newton\times metre }{ ampere } $
$=\dfrac { kg{ ms }^{ -2 }\times m }{ A } =kg{ m }^{ 2 }{ s }^{ -2 }{ A }^{ -1 }=\left[ M{ L }^{ 2 }{ T }^{ -2 }{ A }^{ -1 } \right] $

In an experiment to measure the velocity of electrons, an electric field $(E)$ and a magnetic field $(B)$ are employed to produce zero deflection. Then :

  1. The two fields are parallel and the velocity is given by $BE$

  2. The two fields are perpendicular and the velocity is given by $E/B$

  3. The two fields are parallel and the velocity is given by $E/B$

  4. The two fields are perpendicular and the velocity is given by $BE$


Correct Option: B
Explanation:

The electric force on electron of charge ${e}$  is,
             $  F= {e}E $ 
                    where, E = electric field.

And Magnetic force ,
            $ F= {e}$ $(V\times B)$
               where, V= velocity of electron in magnetic field
                            B= magnetic field

From the above equations,

          $E= V\times B$
Electric field E is perpendicular to both velocity of electron and the magnetic field. So,  The two field is perpendicular to each other and the velocity of electron is $\dfrac{E}{B}$.

B. The two fields are perpendicular and the velocity is given by $\dfrac{E}{B}$.

Write the dimensions of Magnetic flux in terms of mass, time, length and charge.

  1. $[M^1L^2T^{-1}Q^{-2}]$

  2. $[M^1L^2T^{-1}Q^{-1}]$

  3. $[M^1L^3T^{-1}Q^{-1}]$

  4. $[M^4L^2T^{-1}Q^{-1}]$


Correct Option: B
Explanation:

B. $[M^1 L^2 T^ {-1}Q^{-1}]$


Dimension of magnetic field, 


$[B]=[M^1L^0Q^{-1}]$ 

Dimension of surface Area,

 $[A]=[L^2]$

The magnetic flux , 

$\phi=B.A$

The dimension of magnetic flux in term of mass, time, length and charge,
$[\phi]= [M^1L^2T^{-1}Q^{-1}]$

A solenoid coil is wound on a frame of rectangular cross section. If all the linear dimension of the frame are increased by a factor of two and the number of turns per unit length of the coil remains the same, the self-inductance increases by a factor of

  1. $4$

  2. $8$

  3. $12$

  4. $16$


Correct Option: B
Explanation:

Self inductance, $L = \dfrac{\mu 0 N^2 A}{l}$ _(1)


where N = total number of turns


$n = \dfrac{N}{l}$, where n = number of turns per unit length

$N = nl$ put it in (1)

$L = \dfrac{\mu _0 (n l )^2 A}{l} = \mu _0 n^2 l A$

In the given question n is same
Area will increase by $4$ times
length will increase by $2$ times

$L' = \mu _0 n^2 (2l) (4A) = 8 \mu _0 n^2 lA$

$L' = 8L$ inductance will increased by $8$ times.

The physical quantity which is measured in the unit of Wb $A^{-1}$ is

  1. self inductance

  2. mutual inductance

  3. magnetic flux

  4. both (a) and (b)


Correct Option: D
Explanation:

both (a) and (b) 

self inductance and mutual inductance has same unit both measure magnetic flux per unit area.

The unit of inductance is equivalent to

  1. $\dfrac {volt\times ampere}{second}$

  2. $\dfrac { ampere}{volt\times second}$

  3. $\dfrac {volt}{Ampere\times second}$

  4. $\dfrac {volt\times second}{ampere}$


Correct Option: D
Explanation:

$As \, \varepsilon \, = \,  L \, \dfrac{dI}{dt},$
$L \, = \, \varepsilon \dfrac{dt}{dI} \Rightarrow \, L \, = \, \dfrac{volt \times second}{ampere}$

What is the SI unit of self-inductance ?

  1. Henry

  2. Tesla

  3. Weber

  4. Gauss


Correct Option: A
Explanation:

 Henry (symbol H) is the SI derived unit of self-inductance

Two concentric co-planar circular loops of radii $r _1$ and $r _2$ carry currents of respectively $i _1$ and $i _2$ in opposite directions (one clockwise and the other anticlockwise.) The magnetic induction at the centre of loops is half that due to $i _1$ alone at the centre. If $r _2 = 2r _1$. the value of $i _2 / i _1$ is 

  1. $2$

  2. $\dfrac{1}{2}$

  3. $\dfrac{1}{4}$

  4. $1$


Correct Option: D
Explanation:

$\begin{array}{l} B=\frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 2{ r _{ 1 } } } } -\frac { { { \mu _{ o } }{ i _{ 2 } } } }{ { 2\left( { 2{ r _{ 1 } } } \right)  } }  \ =\frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 2{ r _{ 1 } } } } -\frac { { { \mu _{ o } }{ i _{ 2 } } } }{ { 4{ r _{ 2 } } } }  \ { B^{ ' } }=\frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 2{ r _{ 1 } } } }  \ \Rightarrow B=\frac { { { B^{ ' } } } }{ 2 }  \ \Rightarrow \frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 2{ r _{ 1 } } } } -\frac { { { \mu _{ o } }{ i _{ 2 } } } }{ { 4{ r _{ 1 } } } } =\frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 4{ r _{ 1 } } } }  \ \Rightarrow \frac { { { \mu _{ o } }{ i _{ 1 } } } }{ { 4{ r _{ 1 } } } } =\frac { { { \mu _{ o } }{ i _{ 2 } } } }{ { 4{ r _{ 1 } } } }  \ \Rightarrow \frac { { { i _{ 1 } } } }{ { { i _{ 2 } } } } =1 \ Hence, \ option\, \, D\, \, is\, \, correct\, \, answer. \end{array}$

When the number of turns in a solenoid is doubled without any change in the length of the solenoid, its self-inductance becomes :

  1. Half

  2. Double

  3. Four times

  4. Eight times


Correct Option: C
Explanation:

Self-inductance,
$\begin{array}{l}L \propto {N^2}\\therefore \dfrac{{{L _1}}}{{{L _2}}} = {\left( {\dfrac{{{N _1}}}{{{N _2}}}} \right)^2} = {(2)^2} = 4...........{ since,{N _2} = 2{N _1}} \\left[ {{L _2} = 4{L _1}} \right]\end{array}$