Tag: electromagnetic induction and alternating currents

Questions Related to electromagnetic induction and alternating currents

A long solenoid with length $l$ and a radius $R$ consists of $N$ turns of wire,Neglecting the end effects, find the self-inductance.

  1. $\mu _0N^2\pi R^2/l$

  2. $\mu _0N\pi R^2/l$

  3. $\mu _0N^2\pi R^3l$

  4. $\mu _0N^3\pi R^2l$


Correct Option: A
Explanation:

Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length


Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Hence, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Answer-(A)

If cross section area and length of a long solenoid are increased 3 times then its self-inductance will be changed how many times-

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A$

$\implies E=\dfrac{\mu _{o}N^2 A}{l}i=Li$
                                                                                    where $L$=self inductance
   
$\implies L=\dfrac{\mu _oN^2A}{l}$

Hence, $L\propto \dfrac{A}{l}$

Hence, on increasing both $A$ and $l$ three times,

 $L$ will remain the same.

Hence, answer-(A)

Self inductance of a long solenoid depends upon following(s)-

  1. number of turns

  2. radius of solenoid

  3. length of solenoid

  4. none of these


Correct Option: A,B,C
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L$ depends on $N$,  $R$ and $l$.

Answer-(A),(B),(C)

Self-Inductance of a Long Solenoid is proportional to(where $r$ is radius of solenoid)-

  1. $r$

  2. $r^2$

  3. $r^3$

  4. does not depend upon $r$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Answer-(B)

Area of a long solenoid is doubled.So how many times we have to increase its length to keep its self inductance constant-

  1. 1

  2. 2

  3. 3

  4. 4


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A$

$\implies E=\dfrac{\mu _{o}N^2A}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
$\implies L=\dfrac{\mu _o N^2A}{l}$

$\implies L\propto \dfrac{A}{l}$

The length of solenoid should be doubled also on doubling the area to keep $L$ constant.

Answer-(B)

If radius of long solenoid is doubled, then its self inductance will be :

  1. same

  2. doubled

  3. trippled

  4. quadrupled


Correct Option: D
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Hence, on doubling radius, $L$ becomes 4 times.

Answer-(D)

If length of a solenoid is increased then what change should be made on no. of turns to keep self inductance constant-

  1. increase

  2. remain same

  3. decrease

  4. none of these


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

For constant $L$,    $N^2\propto l$

Hence, on increasing length of coil, number of turns should be increased to keep $L$ constant.

Answer-(A)

Self inductance of long solenoid is directly proportional to-($A$ is area of cross section)

  1. $A$

  2. $A^2$

  3. $A^3$

  4. $A^4$


Correct Option: A
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times A=Li$

$\implies L\propto A$

Answer-(A)

If radius of long solenoid is reduced to half of original without changing other physical factor,then its self inductance will change-

  1. 1/3 times

  2. 1/2 times

  3. 1/5 times

  4. 1/4 times


Correct Option: D
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto R^2$

Hence, on reducing the radius to half, $L$ will becomes $\dfrac{1}{4}$ times.

Answer-(D)

Self inductance $L$ of long solenoid is being proportional to the number of turns $N$ as-

  1. $N$

  2. $N^2$

  3. $N^3$

  4. $N^4$


Correct Option: B
Explanation:
$N$=total number of turns in solenoid
$l$=length of solenoid
$R$=radius of cross section of solenoid
Magnetic field inside solenoid =$B=\mu _o \dfrac{N}{l}i$  where, $\dfrac{N}{l}$=number of turns per unit length

Now, emf induced= $E=NBA$

$\implies E=N\times \mu _o\dfrac{N}{l}i\times \pi R^2$

$\implies E=\dfrac{\mu _{o}N^2\pi R^2}{l}i=Li$
                                                                                    where $L$=self inductance
                                      
Thus, $L=\dfrac{\mu _o N^2 \pi R^2}{l}$

Hence, $L\propto N^2$

Answer-(B)