Tag: coulomb's law

Questions Related to coulomb's law

Determine the electric field strength vector if the potential of the field depends on x, y coordinates as $V = a (x^2 - y^2)$, where a is a constant.

  1. $\vec{E} = - 2a(x\widehat{i} - y\widehat{j})$

  2. $\vec{E} = - a(x\widehat{i} - y\widehat{j})$

  3. $\vec{E} = - \dfrac{a(x\widehat{i} - y\widehat{j})}{2}$

  4. $\vec{E} = - \dfrac{a(x\widehat{i} - y\widehat{j})}{4}$


Correct Option: A
Explanation:

$ \vec E = - \triangledown V $   ( negative of gradient of V)

$\vec E = - (\dfrac{dV}{dx} \hat i + \dfrac{dV}{dy} \hat j )=-a(2x \hat i +2y \hat j )  $

Determine the electric field strength vector if the potential of the field depends on x, y coordinates as $V = axy$ , where $a$ is a constant.

  1. $\vec{E} = -a(y\widehat{i} + y\widehat{j})$

  2. $\vec{E} = -a(x\widehat{i} + y\widehat{j})$

  3. $\vec{E} = -a(x\widehat{i} + x\widehat{j})$

  4. $\vec{E} = -a(y\widehat{i} + x\widehat{j})$


Correct Option: D
Explanation:

$ \vec E = - \triangledown V $   ( negative of gradient of V)

$\vec E = - (\dfrac{dV}{dx} \hat i + \dfrac{dV}{dy} \hat j )=-a(y \hat i + x \hat j ) $

The electric potential existing in space is $V(x, y, z) = A (xy+ yz + zx)$. Find the expression for the electric field :

  1. $-A{(x + Z) \widehat{i} + (y + Z) \widehat{j} + (x + y) \widehat{k}}$

  2. $-A{(y + Z) \widehat{i} + (x + Z) \widehat{j} + (x + y) \widehat{k}}$

  3. $-Ax{ \widehat{i} +y \widehat{j} + Z\widehat{k}}$

  4. $-A{(x+y) \widehat{i} + (x + y) \widehat{j} + (x + y-2Z) \widehat{k}}$


Correct Option: B
Explanation:

$ \vec E = - \triangledown V = -A[(y+z) \hat i + ( z+x) \hat j +( y+x) \hat k ] V/m $

At a certain distance from a point charge, the field intensity is 500 V/m and the potential is 3000 V. The distance and the magnitude of the charge respectively are :

  1. 6 m and 6 $\mu $C

  2. 4 m and 2 $\mu$C

  3. 6 m and 4 $\mu$C

  4. 6 m and 2 $\mu$C


Correct Option: D
Explanation:

The electric field at distance d due to point charge q is $E=kq/d^2 $ and potential $V=kq/d$ 

so, $E=V/d $ or $ d=\dfrac{V}{E}=\dfrac{3000}{500}=6 m$

since, $V=kq/d $

or $3000=9\times 10^9\times \dfrac{q}{6} $

or $q=2\times 10^{-6} C=2 \mu C$

In a certain region of space, the electric potential is $V (x, y, z) = Axy - Bx^2$ $+Cy$, where $A, B\ and\ C$ are positive constants. Calculate the $x, y\ and\ z$ components of the electric field.

  1. $E _x = - Ax, E _y = -Ay, E _z = 0$

  2. $E _x = - Ax + 2Bx, E _y = -Ay -C, E _z = 0$

  3. $E _x = - Ay + 2Bx, E _y = -Ax -C, E _z = 0$

  4. $E _x = - Ay, E _y = -Ax, E _z = 0$


Correct Option: C
Explanation:

Here, $V(x,y,z)=Axy-Bx^2+Cy$


So, $E _x=-\dfrac{V}{dx}=-[Ay-2Bx]=2Bx-Ay$;


$E _y=-\dfrac{dV}{dy}=-[Ax+C]=-Ax-C$ and 

$E _z=-\dfrac{dV}{dz}=0$

Potential difference between centre and surface of the sphere of radius R and uniform volume charge density $\rho$ within it will be :

  1. $\displaystyle \dfrac{\rho R^2}{6 \varepsilon _0}$

  2. $\displaystyle \dfrac{\rho R^2}{4 \varepsilon _0}$

  3. $\displaystyle \dfrac{\rho R^2}{3 \varepsilon _0}$

  4. $\displaystyle \dfrac{\rho R^2}{2 \varepsilon _0}$


Correct Option: A
Explanation:

Using Gauss's law the electric field inside the sphere , $E.4\pi r^2=\dfrac{q}{\epsilon _0}=\rho\dfrac{(4/3)\pi r^3}{\epsilon _0}$

or $E=\dfrac{\rho r}{3\epsilon _0}$

Potential difference between surface and center is $V=-\int _R^0 E.dr=-\int _R^0 \dfrac{\rho r}{3\epsilon _0} dr=\dfrac{\rho R^2}{6\epsilon _0}$

A uniform electric field exists in x-y plane. The potential of points A (-2m, 2m), B(+2m, 2m) and C(2m, 4m) are 4 V, 16V and 12 V respectively. The electric field is :

  1. $(4\widehat{i} + 5 \widehat{j}) V/m$

  2. $(3\widehat{i} + 4 \widehat{j}) V/m$

  3. $-(3\widehat{i} + 4 \widehat{j}) V/m$

  4. $(3\widehat{i} - 4 \widehat{j}) V/m$


Correct Option: D
Explanation:
Let equation of potential be $ax+by+c$ where $(x,y)$ are the co-ordinates of the point in $x, y$ plane.
so, $a(2)+b(2)+c=4$
$a(-2)+b(2)+c=16$
$a(2)+b(4)+c=12$
Solving above equations, we get $a=-3;b=4;c=2$
so equation of potential is $V=-3x+4y+2$ 
Now the electric field is $\vec E=(-dV/dx)\vec i+(-dV/dy)\vec j=3\vec i-4\vec j$

In a certain region of space, the electric potential is $V (x, y, z) = Axy - Bx^2$ $+Cy$, where $A, B\ and\ C$ are positive constants. At which points is the electric field equal to zero?

  1. $x = +C/A, y = +BC/A$ $^2$, any value of $z$

  2. $x = +C/A, y = +2BC/A$ $^2$, any value of $z$

  3. $x = -C/A, y = -2BC/A$ $^2$, $z=0$

  4. $x = -C/A, y = -2BC/A$ $^2$, any value of $z$


Correct Option: D
Explanation:

$ \vec E = - \triangledown V = - [ ( Ay - 2Bx) \hat i + ( Ax + C) \hat j ] $


$ \vec E = 0$  at, 

$ E _y = 0 \Rightarrow Ax + C= 0 \Rightarrow x = -C/A $

$ E _x= 0 \Rightarrow Ay - 2Bx= Ay + 2BC/A =0 \Rightarrow y = -2BC/A^2 $

$ E _z = 0 $  everywhere . 

The electric potential existing in space is $V(x, y, z) = A (xy+ yz + zx)$. If A is $10$ SI units, find the magnitude of the electric field at $(1 m, 1 m, 1 m)$ :

  1. $20 \sqrt 2$ N/C

  2. $20 \sqrt 3$ N/C

  3. $10 \sqrt 3$ N/C

  4. $20 $ N/C


Correct Option: B
Explanation:

$ \vec E = - \triangledown V = -A[(y+z) \hat i + ( z+x) \hat j +( y+x) \hat k ] = -10[2 \hat i + 2 \hat j + 2 \hat k ] = 20\sqrt{3} N/C$

The electric potential at a point (x, y) in the x-y plane is given by V = - Kxy. The field intensity at a distance r in this plane, from the origin is proportional to :

  1. $r^2$

  2. $r$

  3. $1/r$

  4. $1/r^2$


Correct Option: B
Explanation:
Let the $x-y$ coordinates of the point at distance $r$ from the origin be given as $x=rcos\theta$, $y=rsin\theta$
Potential is given as $V=-Kxy$
Now, Electric field intensity is $\vec E=(-dV/dx)\vec i+(-dV/dy)\vec j=K(y\vec i+x\vec j)=K(rsin\theta\vec i+rcos\theta\vec j)=Kr(sin\theta\vec i+cos\theta\vec j)\propto r$
So electric field potential is proportional to $r$.