Tag: probability distributions

Questions Related to probability distributions

If on an average ,5 percent of the output in a factory making certain parts, is defective and that 200 units are in a package then the probability that atmost 4 defective parts may be found in that package is

  1. $\displaystyle e^{-10}\left [ 1+\frac{100}{1!}+\frac{100^{2}}{2!}+\frac{100^{3}}{3!}+\frac{100^{4}}{4!} \right ]$

  2. $\displaystyle e^{-10}\left [ 1+\frac{10}{1!}+\frac{10^{2}}{2!}+\frac{10^{3}}{3!}+\frac{10^{4}}{4!} \right ]$

  3. $\displaystyle e^{-10}\left [ 1-\frac{10}{1!}+\frac{10^{2}}{2!}+\frac{10^{3}}{3!}+\frac{10^{4}}{4!} \right ]$

  4. $\displaystyle e^{-10}\left [ 1-\frac{100}{1!}+\frac{100^{2}}{2!}+\frac{100^{3}}{3!}+\frac{100^{4}}{4!} \right ]$


Correct Option: B
Explanation:

Here $\lambda$
$=\dfrac{5}{100}.200$
$=10$.
Hence by applying Poisson distribution, we get that the probability that atmost 4 defective part are found is 
$=\sum _{k=0} ^{k=4} \dfrac{e^{-10}.10^{k}}{k!}$

$=e^{-10}[1+\dfrac{10}{1!}+\dfrac{10^{2}}{2!}+\dfrac{10^{3}}{3!}+\dfrac{10^{4}}{4!}]$.

Suppose $300$ misprints are distributed randomly throughout a book of $500$ pages. The probability that a given page contains, at least one misprint is 

  1. $1.e^{-0.6}$

  2. $1-e^{-0.6}$

  3. $(0.6)e^{-0.6}$

  4. $(0.06)e^{-0.6}$


Correct Option: B
Explanation:

Here $\lambda = \cfrac{300}{500}=0.6$
Hence $ P(X\geq 1) = 1-P(X=0)=1-\cfrac{e^{-0.6}(0.6)^0}{0!}=1-e^{-0.6}$

A manufactured product on an average has 2 defects per unit of product produced. If the number of defects follows Poisson distribution, the probability of finding at least one defect is 

  1. $e^{-2}$

  2. $1-e^{-2}$

  3. $\displaystyle \frac{e^{-2}2^{1}}{1!}$

  4. $e^{-0.02}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region.
$x$: The actual number of successes that occur in a specified region.
$P(x$; $ \mu $): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
$ P(x \ge 1; \mu) = 1 - P (x=0 ; \mu) $
$ \mu = 2 $    
$x = 0$ (No defective product) 
$ P(x \ge 1; 2) = 1 - P (x=0 ; 2) = 1 - \dfrac { { e }^{ -2 }{ 2 }^{ 0} }{ 0! } = 1 - {e}^{-2}$
                             

A car hire firm has $2$ cars which it hires out day by day. If the number of demands for a car on each day follows poisson distribution with parameter $1.5$, then the probability that only one car is used is

  1. $e^{-1.5}$

  2. $1.5\times e^{-1.5}$

  3. $1-2.5\times e^{-1.5}$

  4. $1-1.5\times e^{-1.5}$


Correct Option: B
Explanation:

Here $\lambda = 1.5$
Hence probability that only one car is used is $=P(X=1) = \cfrac{e^{-1.5}(1.5)}{1!}=1.5e^{-1.5}$

If $3$% of electric bulbs manufactured by a company are defective, the probability that a sample of $100$ bulbs has no defective bulbs is

  1. 0

  2. $e^{-3}$

  3. $1-e^{-3}$

  4. $3e^{-3}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region.
x: The actual number of successes that occur in a specified region.
P(x;$ \mu $ ): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
$ \mu = 100 \times 0.03 = 3 $    
$x = 0$ (No defective bulbs) 
$ P(0; 3)=\dfrac { { e }^{ -3 }{ 3 }^{ 0 } }{ 0! }  $
$P(0;3)={ e }^{ -3 } $

On an average, a submarine on patrol sights $6$ enemy ships per hour. Assuming the number of ships sighted in a given length of time is a poisson variate, the probability of sighting atleast one ship in the next $15$ minutes is

  1. $e^{-15}$

  2. $1-e^{-6}$

  3. $1-e^{-15}$

  4. $e^{-6}$


Correct Option: C
Explanation:

The probability of seeing atleast one ship
=1-(probability of seeing no ship)
$=1-\dfrac{\lambda^{0}.e^{-\lambda}}{0!}$
$=1-e^{-\lambda}$
It is given the Poisson's variate is the number of ships passing per unit time.
Hence in the above case $\lambda=15$
Thus the required probability is
$=1-e^{-15}$.

If the number of telephone calls coming into a telephone exchange between 10 AM and 11 AM follows P.D. with parameter 2, then the probability of obtaining zero calls in that time interval is

  1. $e^{-2}$

  2. $1-e^{-2}$

  3. $2.e^{-2}$

  4. $3.e^{-2}$


Correct Option: A
Explanation:

Here P.D parameter $\lambda = 2$
Hence probability of obtaining zero calls during 10 AM to 11 AM is $=(P(X=0)=e^{-2}$ 

A manufactured product on an average has $2$ defects per unit of product produced. If the number of defects follows P.D., the probability of finding zero defects is

  1. $e^{-2}$

  2. $1-e^{-2}$

  3. $\displaystyle \frac{e^{-2}2^{1}}{\angle 1}$

  4. $e^{-002}$


Correct Option: A
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
: The mean number of successes that occur in a specified region.
x: The actual number of successes that occur in a specified region.
P(x; ): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is 
$ \mu = 2$ (defects per unit of product produced) 
x = 0 (zero defects)
$ P(0; 2)=\dfrac { { e }^{ -2 }{ 2 }^{ 0 } }{ 0! } = {e}^{-2}$

If the number of telephone calls coming into a telephone exchange between 10 AM and 11 AM follows Poisson distribution with parameter 2 then the probability of obtaining at least one call in that time interval is 

  1. $e^{-2}$

  2. $(1-e^{-2})$

  3. $2e^{-2}$

  4. $3e^{-2}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region(Parameter)
x: The actual number of successes that occur in a specified region.
P(x;$ \mu $ ): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
$ P(x \ge 1; \mu) = 1 - P (x=0 ; \mu) $
$ \mu = 2 $    
$x = 0$ (No call comes) 
$ P(x \ge 1; 2) = 1 - P (x=0 ; 2) = 1 - \dfrac { { e }^{ -2 }{ 2 }^{ 0} }{ 0! } = 1 - {e}^{-2}$
                             

Cycle tyres are supplied in lots of $10$ and there is a chance of $1$ in $500$ to be defective. Using poisson distribution, the approximate number of lots containing no defectives in a consignment of $10,000$ lots if $e^{-0.02}=0.9802$ is

  1. $9980$

  2. $9998$

  3. $9802$

  4. $9982$


Correct Option: C
Explanation:

Here $\lambda = \cfrac{1}{500}\times 10 = 0.02$
Thus probability that  lot is not defective is $=P(X=0)=\cfrac{e^{-0.002}(.0020^0}{0!}=e^{-.002}=0.9802$
Hence number of no defective lots out of $10,000$ is $=.9802\times 10,000=9802$