Tag: probability distributions

Questions Related to probability distributions

There are $500$ boxes each containing $1000$ ballot papers for election. The chance that a ballot paper is defective is $0.002$. Assuming that the number of defective ballot papers follow Poisson distribution, the number of boxes containing at least one defective ballot paper given that $e^{-2}=0.1353$ is

  1. $216$

  2. $432$

  3. $648$

  4. $234$


Correct Option: B
Explanation:

Here $\lambda = .002\times 1000=2$
Thus probability that a box contain at least one defective ballot $=1-P(X=0)=1-e^{-2}=1-0.1353=.8647$   
Hence   number of box out of $500$ which contain at least one defective ballot is $=.8647\times 500 =432$

Six unbiased coins are tossed $6400$ times. Using Poisson distribution, the approximate probability of getting six heads $2$ times is

  1. $\displaystyle \frac{e^{-64}(64)^{2}}{ 2!}$

  2. $\displaystyle \frac{e^{-100}(100)^{2}}{ 2!}$

  3. $1-\displaystyle \frac{e^{-100}(100)^{x}}{ x!}$

  4. $\displaystyle \frac{e^{-100}(100)^{x}}{x!}$


Correct Option: B
Explanation:

Here $\lambda = \left(\cfrac{1}{2}\right)^6\times 64100=100$
Hence probability of getting six heads two times $=P(X=2)=\cfrac{e^{-100}(100)^2}{2!}$

A company knows on the basis of past experience that $2$% of the blades are defective. The probability of having 3 defective blades in a sample of $100$ blades is

  1. $e^{-2}2^{2}$

  2. $\displaystyle \frac{e^{-2}2^{3}}{3!}$

  3. $\displaystyle \frac{e^{-2}2^{3}}{ 2!}$

  4. $\displaystyle \frac{e^{-4}2^{-1}}{ 2!}$


Correct Option: B
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region(parameter)
x: The actual number of successes that occur in a specified region.
P(x; $ \mu $): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
Here,$ \mu  =  100 \times 0.02 = 2 $
$x = 3$(defective blades)
$ P(3;2)=\dfrac { { e }^{ -2 }{ 2 }^{3 } }{ 3! } $

A car hire firm has $2$ cars which it hires out day by day. If the number of demands for a car on each day follows poisson distribution with parameter $1.5$, then the probability that neither car is used is

  1. $e^{-1.5}$

  2. $1.5\times e^{-1.5}$

  3. $1-2.5\times e^{-1.5}$

  4. $1-1.5\times e^{-1.5}$


Correct Option: A
Explanation:

By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$ \mu $: The mean number of successes that occur in a specified region(parameter)
x: The actual number of successes that occur in a specified region.
P(x; $ \mu $): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is $ \mu $
Here, $ \mu  = 1.5$ and $x = 0$ (neither car is used)
$ P(0;1.5)=\dfrac { { e }^{ -1.5 }{ 1.5 }^{0 } }{ 0! } = {e}^{-1.5} $

In a big city, $5$ accidents take place over a period of $100$ days. If the numebr of accidents follows P.D., the probability that there will be $2$ accidents in a day is

  1. $\displaystyle \frac{e^{-5}5^{2}}{ 2!}$

  2. $\displaystyle \frac{e^{-05}5^{2}}{ 2!}$

  3. $\displaystyle \frac{e^{-005}(0.05)^{2}}{ 2!}$

  4. $\displaystyle \frac{e^{5}5^{2}}{ 2!}$


Correct Option: C
Explanation:
By using Poisson distribution, 
$ P(x;\mu)=\dfrac { { e }^{ -\mu }{ \mu }^{ x } }{ x! } $
$\mu\ :$ The mean number of successes that occur in a specified region.
$x\ :$ The actual number of successes that occur in a specified region.
$P(x;\mu )\ :$ The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is 
$ \mu = \dfrac {5}{100} = 0.05 $
$x = 2$ 
$ P(2; 005)=\dfrac { { e }^{ -0.05 }{ 0.05 }^{ 2 } }{ 2! } $

If ${ \mu  } _{ 2 }=20,{ \mu  } _{ 2 }^{ 1 }=276$ for a discrete random variable $X$, then the mean of the random variable $X$ is

  1. $16$

  2. $5$

  3. $2$

  4. $1$


Correct Option: A
Explanation:

$\mu _2=E(X^2)-[E(X)]^2......(i)$

$\mu _2'=E(X)^2.....(ii)$
Given: $\mu _2=20, \mu _2'=276$
from equation (ii) $\implies E(x^2)=276$
and from equation (i), $\implies 20=276-[E(X)]^2$
$\implies [E(X)]^2=276-20=250\\implies E(X)=16$
is the mean of random variable.