Tag: probability distributions

Questions Related to probability distributions

For a poission distribution variable $X$ is such that $P(X = 2) = 9 P(X= 4) + 90 P(X= 6)$ the mean is

  1. $2$

  2. $3$

  3. $1$

  4. None of these


Correct Option: C
Explanation:
For $P.D. P(X=r)=\displaystyle \dfrac{e^{-\lambda}\lambda ^{r}}{r!},r=0,1,2,\cdots$
$\therefore \displaystyle \dfrac{e^{-\lambda}\lambda ^{2}}{2!}=\dfrac{9e^{-\lambda}\lambda ^{4}}{4!}+90 \dfrac{e^{-\lambda}\lambda ^{6}}{6!}$        (given)
$\Rightarrow \displaystyle\dfrac{\lambda ^{2}}{2}=\dfrac{9}{24}\lambda ^{4}+\dfrac{90}{720}\lambda ^{6}$ 
$\Rightarrow \lambda ^{4}+3\lambda ^{2}-4=0$
$\Rightarrow \left ( \lambda^{2}+4 \right )\left ( \lambda^{2}-1 \right )=0=>\lambda= \pm 1$
$\Rightarrow \lambda=1$ as $\lambda>0$ and $(\lambda^{2}+4=0$ impossible$)$
$\therefore$ mean$=\lambda=1$

For a Poission distribution, which of the following is true

  1. $Mean = Mode$

  2. $Median = S.D.$

  3. $Mean = Variance$

  4. $Median = Variance$


Correct Option: C
Explanation:
For Poission distribution we have $\displaystyle P\left ( r \right )=\dfrac{e^{-\pi }\lambda ^{r}}{r^{i}}\left ( r=0, 1, 2,...\infty  \right)$ 
$\displaystyle$ mean $\displaystyle =\dfrac{\sum f _{i}x _{i}}{\sum f _{i}}=\sum _{r=0}^{\infty }rP\left ( r \right ),\sum f _{i}P\left ( r\right )=1$$\displaystyle =0+\lambda e^{-\lambda }+2\dfrac{\lambda ^{2}e^{-\lambda }}{2!}+3\dfrac{\lambda ^{3}e^{-\lambda }}{3!}+.....\infty$ $\displaystyle =\lambda e^{-\lambda }\left ( 1+\dfrac{\lambda }{11}+\dfrac{\lambda ^{2}}{2!}+\dfrac{\lambda ^{3}}{3!}+.....\infty  \right )$$\displaystyle =\lambda e^{\lambda }.e^{\lambda }=\lambda $
similarly, $\displaystyle o^{2}=$ Variance $=\sum _{r=0}^{\infty }r^{2}P\left ( r \right )-\left ( \sum _{r=0}^{\infty } rP\left ( r \right ) \right )^{2}$ $=\displaystyle \lambda e^{\lambda }\left ( e^{-\lambda }+\lambda e^{-\lambda } \right )-\lambda ^{2}=\lambda =$ mean 
$\therefore \text{mean}=\text{variance}$

At a telephone enquiry system the number of phone calls regarding relevant enquiry follow Poisson distribution with a average of 5 phone calls during IO-minute time intervals. The probability that there is at the most one phone call during a 10-minute time period is

  1. $\displaystyle \frac{6}{5^{e}}$

  2. $\displaystyle \frac{5}{6}$

  3. $\displaystyle \frac{6}{55}$

  4. $\displaystyle \frac{6}{e^{5}}$


Correct Option: D
Explanation:

According to Poisson distribution
$\displaystyle P(X=r)=\frac{e^{-m}m^{r}}{r!}$
$\displaystyle \therefore P(X\leq 1)=P(X=0)+P(X=1)$
$\displaystyle =e^{-m}+\frac{e^{-m} m}{1!}$
Given m $\displaystyle =$mean$ = 5 $
$\displaystyle \therefore P(x \leq 1)=e^{-5}+5\times e^{-5}=e^{-5}(1+5)=\frac{6}{e^{5}}$

The probability of r successes in case of poissons distrbution is

  1. $\dfrac{e^{\gamma }m}{\angle \gamma }$

  2. $\dfrac{\gamma ^{m}e^{m}}{\angle \gamma }$

  3. $\dfrac{e^{m}\gamma }{\angle \gamma }$

  4. $\dfrac{e^{-m}m^{r}}{\angle \gamma }$


Correct Option: D
Explanation:

in Poisson distribution, probability $ P(x; m  )=  \dfrac { { e }^{ - m  }{ m }^{ x } }{ \angle x } $
$m$ = mean  ;   $x$= number of success     $ \angle x =$ factorial $ x $
 For $r$ success  $x= r$;        
  $ P(r; m )=  \dfrac { { e }^{ -m  }{ m  }^{ r } }{ \angle r } $ 

A random variable $X$ has Poisson distribution with mean $2$. Then $P(X > 1.5)$ equals

  1. $2/e^{2}$

  2. $0$

  3. $1-\dfrac{3}{e^{2}}$

  4. $\dfrac{3}{e^{2}}$


Correct Option: C
Explanation:

For Poisson distribution of mean = $\mu = 2 $ 
 P$(x ; \mu) = \frac { { e }^{ -\mu  }{ \mu  }^{ x } }{ x! }$
$P(X>1.5) = 1 - [P(X=0) + P(X=1)]$ 

P$(0; 2) = \dfrac { { e }^{-2}{2}^{0}}{0!}={e}^{-2}$
 P$(1; 2) = \dfrac { { e }^{-2}{2}^{} } {1!}=2{e}^{-2}$
$P(X>1.5) = 1 - [P(X=0) + P(X=1)] $
$ = 1 - [{e}^{-2}+ 2{e}^{-2} ] = 1 - 3  {e}^{-2} = 1 - \frac { 3 }{ { e }^{ 2 } } $

If $X$ is a random poisson variate such that $\alpha =p(X=1)=p(X=2)$, then $p(X=4)=$

  1. $2\alpha $

  2. $\dfrac{\alpha }{3}$

  3. $\alpha e^{-2}$

  4. $\alpha e^{2}$


Correct Option: B
Explanation:

In  Poisson distribution such that  $ \alpha = p(X=1)=p(X=2) $ 
        
$   p(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $  
       => $ \alpha = \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!}  $       =>   $ \alpha =  { e }^{-\mu}{\mu}  $
                 =>  $ { e }^{-\mu}{\mu} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2} $
                 =>   $ \mu = 2 $ 
  $   p(4; \mu) = \dfrac { { e }^{-\mu}{\mu}^{4}}{4!} =  \dfrac { { e }^{ -\mu  }{ \mu \times { \mu  }^{ 3 } } }{ 24 }  = \dfrac { \alpha {\times { 2 }^{ 3 } } }{ 24 }  = \dfrac { \alpha  }{ 3 } $  

The variance of P.D. with parameter $\lambda $ is

  1. $\lambda $

  2. $\sqrt{\lambda }$

  3. $\dfrac{1}{\lambda}$

  4. $\dfrac{1}{\sqrt {\lambda}}$


Correct Option: A
Explanation:

$E[{ X }^{ 2 }]= \sum _{ k=0 }^{ \infty  }{ k^{ 2 } } \sum _{  }^{  }{  } \dfrac { 1 }{ k! } \lambda ^{ k }e^{ -\lambda  }\ \ = ^{ k }e^{ -\lambda  }\sum _{ 1 }^{ \infty  }{ k\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } \= ^{ k }e^{ -\lambda  }(\sum _{ 1 }^{ \infty  }{ (k-1)\dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } ) +\sum _{ 1 }^{ \infty  }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ =^{ k }e^{ -\lambda  }(\sum _{ 2 }^{ \infty  }{ (\lambda \dfrac { 1 }{ (k2)! } \lambda ^{ k-2 } } )+ \sum _{ 1 }^{ \infty  }{ \dfrac { 1 }{ (k1)! } \lambda ^{ k-1 } } )\ = ^{ k }e^{ -\lambda  }(\sum _{ i=0 }^{ \infty  }{ (\lambda \dfrac { 1 }{ i! } \lambda ^{ i } } )+ \sum _{ j=0 }^{ \infty  }{ \dfrac { 1 }{ j! } \lambda ^{ j } } )\ = ^{ k }e^{ -\lambda  }(\lambda e^{ \lambda  }+e^{ \lambda  })\  \ = { \lambda  }^{ 2 }+ \lambda \ \ Variance= E[{ X }^{ 2 }]- { E[X] }^{ 2 }\ = { \lambda  }^{ 2 }+ \lambda - { \lambda  }^{ 2 }\ = \lambda \ \ \ $

If a random variable $X$ has a poisson distributionsuch that $P(X=1)=P(X=2)$, its mean and varianceare

  1. $1,1$

  2. $2, 2$

  3. $2, 3$

  4. $2,4$


Correct Option: B
Explanation:

In  Poisson distribution such that $P(X=1)=P(X=2)$
    
$ P(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!}$
          =>  $ P(1; \mu)  =  P(2; \mu) $
         =>  $ \dfrac { { e }^{-\mu}{\mu}^{1}}{1!} = \dfrac { { e }^{-\mu}{\mu}^{2}}{2!}  $ 
          => $ 1 =$ $ \dfrac {\mu}{2} $ 
         => $ \mu = 2 $
 In Poisson distribution Variance $(m)$ is equal to mean
       Mean = Variance  = $2 $

If m is the variance of P.D., then the ratio of sum of the terms in even places to the sum of the terms in odd places is

  1. $e^{-m}\cosh m$

  2. $e^{-m}\sinh m$

  3. $\coth m$

  4. $\tanh m$


Correct Option: D
Explanation:

Sum of the terms in Even places will be 
$=e^{-m}[m+\dfrac{m^{3}}{3!}+\dfrac{m^{5}}{5!}+...]$

$=e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]$ ...(i)
Sum of the terms in Odd places will be 
$=e^{-m}[1+\dfrac{m^{2}}{2!}+\dfrac{m^{4}}{4!}+...]$

$=e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]$ ...(ii)
Taking the ratio of i and ii, we get 
$\dfrac{i}{ii}$

$=\dfrac{e^{-m}\dfrac{1}{2}[e^{m}-e^{-m}]}{e^{-m}\dfrac{1}{2}[e^{m}+e^{-m}]}$

$=\dfrac{e^{m}-e^{-m}}{e^{m}+e^{-m}}$

$=\dfrac{2sinhm}{2coshm}$

$=tanh(m)$.


If ${m}$ is the variance of Poisson distribution, then sum of the terms in even places is

  1. $e^{-m}$

  2. $e^{-m}\cosh m$

  3. $e^{-m}\sinh m$

  4. $e^{-m}\coth m$


Correct Option: C
Explanation:

If m is the variance of P. D, then  P$(x; \mu) = \dfrac { { e }^{-\mu}{\mu}^{x}}{x!} $
Sum of the terms in even places = [ P$(1; \mu) + P(3; \mu)  + P(5; \mu) + .........$ ]


                                       =  [$\dfrac { { e }^{-\mu}{\mu}^{1}}{1!} + \dfrac { { e }^{-\mu}{\mu}^{3}}{3!} + \dfrac { { e }^{-\mu}{\mu}^{5}}{5!} + ....... $]

                                      =  $  { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$       --------------------- (1)

  Since   ${ e }^{ x }=1+\dfrac { x }{ 1! } +\dfrac { { x }^{ 2 } }{ 2! } +\dfrac { { x }^{ 3 } }{ 3! } +\dfrac { { x }^{4} }{ 4! } +....$
    ${ e }^{ -x }=1+\dfrac {( -x )}{ 1! } +\dfrac { { (-x) }^{ 2 } }{ 2! } +\dfrac { {( -x) }^{ 3 } }{ 3! } +\dfrac { { (-x) }^{4} }{ 4! } +....$ 

on subtracting , we get  
 ${e}^{x} - { e }^{-x} =  2[ x + \dfrac {{x}^{3}}{3!} + \dfrac {{x}^{5}}{5!} + .....] $
$ \dfrac {{e}^{x} - { e }^{-x}}{2} =  [ x +\dfrac { { x }^{ 3 } }{ 3! } + \dfrac {{x}^{5}}{5!} + .....] $
So, 
$ \dfrac {{e}^{\mu} - { e }^{-\mu}}{2} =  [ x +\dfrac { { \mu }^{ 3 } }{ 3! } + \dfrac {{\mu}^{5}}{5!} + .....] $
put this value in equation (1),
Sum of the terms in even places = $  { e }^{-\mu} [ \mu + \dfrac {{\mu}^{3}}{3!} + \dfrac {{\mu}^{5}}{5!} + .......]$
                    =  $  { e }^{-\mu} (\dfrac {{e}^{\mu} - { e }^{-\mu}}{2}) $
                    = $ { e }^{-\mu} \sinh { \mu  } $
                    = $ { e }^{-m} \sinh {m} $       [ Variance (m) is equal to mean ($\mu$) in Poisson distribution ]