Tag: maths

Questions Related to maths

Select the correct option.
The first term of an $AP$ is $p$ and the common difference is $q$, then its $10^{th}$ term is 

  1. $q + 9p$

  2. $p - 9q$

  3. $p + 9q$

  4. $2p + 9q$


Correct Option: C
Explanation:

First term of $AP = P$


Common difference of $AP= q$


$10^{th}$ term of $AP = p + (10 - 1) q$

                             $= p + 9q$

Select the correct option.
The value of $x$ for which $2x, (x + 10) $ and $(3x + 2)$ aree the three consecutive terms of an AP, is 

  1. $6$

  2. $-6$

  3. $18$

  4. $-18$


Correct Option: C
Explanation:

Consecutive terms of $AP \Rightarrow 2x, (x + 10 ) , (3x + 2)$

According to the properties

$2(x + 10) = 2x + 3x + 2$

$4x + 20 = 5x + 2$

$x = 18$


$\displaystyle \frac{b+c-a}{a}, \frac{c+a-b}{b}, \frac{a+b-c}{c}$ are in A.P., then $\displaystyle \frac{1}{a}, \frac{1}{b}, \frac{1}{c}$ are in

  1. A.P.

  2. H.P

  3. G.P

  4. A.G.P


Correct Option: A
Explanation:

Given,

$\dfrac{b+c-a}{a},\dfrac{c+a-b}{b},\dfrac{a+b-c}{c}$ one in A.P

Now,

$\because \dfrac{b+c-a}{a},\dfrac{c+a-b}{b},\dfrac{a+b-c}{c}$ are in A.P


$\therefore  \dfrac{b+c-a}{a}+2,\dfrac{c+a-b}{b}+2,\dfrac{a+b-c}{c}+2$, must be  in A.P


$\therefore \dfrac{b+c-a+2a}{a},\dfrac{c+a-b+2b}{b},\dfrac{a+b-c+2c}{c}$ are in A.P


$\therefore \dfrac{a+b+c}{a},\dfrac{a+b+c}{b},\dfrac{a+b+c}{c}$ are in A.P


$\because \dfrac{a+b+c}{a},\dfrac{a+b+c}{b},\dfrac{a+b+c}{c}$ are in A.P


$\therefore \dfrac{1}{(a+b+c)}\times \dfrac{(a+b+c)}{a},\dfrac{1}{(a+b+c)}\times \dfrac{(a+b+c)}{b},\dfrac{1}{(a+b+c)}\times \dfrac{(a+b+c)}{c}$ are in A.P


$\therefore \dfrac{1}{a},\dfrac{1}{b},\dfrac{1}{c}$ are in A.P
 

Let $S _n$ be the sum of all integers k such that $2^n < k < 2^{n-1}$, for n > 1, Then $9$ divides $S _n$ if and only if

  1. $n$ is odd

  2. $n$ is of the form $3k+1$

  3. $n$ is even

  4. $n$ is of the form $3k +2$


Correct Option: C
Explanation:

Number of integers between 2$^n$ and $2^{2n+ 1} - 2^n - 11$
and I term $= 2^n + 1$
last term $= 2^{n + 1} - 1$
$\therefore \displaystyle S _n = \frac{(2^{n + 1} - 2^n - 1)}{2} [2^n + 1 + 2^{n + 1} - 1]$
$\displaystyle \frac{(2^{n + 1} - 2^n - 1)}{2} (2^n)(1 + 2)$
$= (2^n - 1) \displaystyle \frac{(2^n).3}{2}$
$S _n= 9 \lambda; \lambda \varepsilon I$
$\therefore 3 \times 2^{n - 1} \times (2^n - 1) = 9 \lambda$
$2^{n - 1} \times (2^n - 1) = 3 \lambda$
$2^n (2^n - 1) = 6 \lambda$
It is possible when n is even.

The sum of the three numbers in A.P is $21$ and the product of the first and third number of the sequence is $45$. What are the three numbers?

  1. $5, 7$ and $9$

  2. $9, 7$, and $5$

  3. $3, 7$, and $11$

  4. Both (1) and (2)

  5. None of these


Correct Option: D
Explanation:

Let the numbers are be $a - d, a, a + d$
Then $a - d + a + a + d = 21$
$3a = 21$
$a = 7$
and $(a - d)(a + d) = 45$
$a^2 - d^2 = 45$
$d^2 = 4$
$d=\pm 2$
Hence, the numbers are $5, 7$ and $9$ when $d = 2$ and $9, 7$ and $5$ when $d = -2$. In both the cases numbers are the same.

The sum of $10$ numbers is $100$. The first term is $1$. Find its common difference.

  1. $2$

  2. $1$

  3. $3$

  4. $4$


Correct Option: A
Explanation:
The sum of first $n$ terms of arithmetic series formula can be written as,
$S _n = \dfrac{n}{2} [2a + (n - 1)d]$ ............ (1)
$n =$ number of terms $= 10$
$S _n = 100$
First term, $a = 1$
Common difference, $d = ?$
From $(1)$, we have
$100 = \dfrac{10}{2} [2 \times 1 + (10 - 1)d]$
$100 =  5[2 + 9d]$
$100 = 10 + 45d$
$ 100 - 10 = 45d$
$90 = 45d$
$d = \dfrac{90}{45} = 2$
The common difference is $2$.

The sum of first $10$ terms and $20$ terms of an AP are $120$ and $440$ respectively. What is the common difference?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

Let the first term be $a$ and common difference be $d$.
So, sum of first $10$ terms $=\dfrac { 10 }{ 2 } (2a+(10-1)d)$

$\implies 120 =5(2a+9d)$
$\implies 24=2a+9d$ .............. $(i)$
Sum of first 20 terms $=\frac { 20 }{ 2 } (2a+(20-1)d)$
$\implies 440 =10(2a+19d)$
$\implies 44=2a+19d$ ......... $(ii)$
Subtracting equation (i) from (ii) gives
$20=10d$
$\implies d=2$
Common difference =2
Hence, option B is correct.

If ${ a } _{ 1 },{ a } _{ 2 },{ a } _{ 3 },\dots $ are terms of AP such that ${ a } _{ 1 }+{ a } _{ 5 }+{ a } _{ 10 }+{ a } _{ 15 }+{ a } _{ 20 }+{ a } _{ 24 }=225$, then the sum of first $24$ terms is

  1. $9\times { 10 }^{ 2 }$

  2. $9\times { 10 }^{ 3 }$

  3. $10\times { 9 }^{ 2 }$

  4. $10\times { 9 }^{ 3 }$


Correct Option: A
Explanation:

We know that the sum of terms of AP equidistant from the beginning and end is always same and it is always equal to the sum of first and last terms.
$\Rightarrow { a } _{ 1 }+{ a } _{ 24 }={ a } _{ 6 }+{ a } _{ 20 }={ a } _{ 10 }+{ a } _{ 15 }$
$\because { a } _{ 1 }+{ a } _{ 5 }+{ a } _{ 10 }+{ a } _{ 15 }+{ a } _{ 20 }+{ a } _{ 24 }=225$
$\therefore 3\left( { a } _{ 1 }+{ a } _{ 24 } \right) =225\Rightarrow { a } _{ 1 }+{ a } _{ 24 }=75$
$\therefore { S } _{ 24 }=\dfrac { 24 }{ 2 } \left( { a } _{ 1 }+{ a } _{ 24 } \right)$   $\left[ \because { S } _{ n }=\dfrac { n }{ 2 } \left( { a } _{ 1 }+{ a } _{ n } \right)  \right] $
           $=12\left( 75 \right) =900=9\times { 10 }^{ 2 }$

$x _{1}, x _{2}, x _{3}, ....$ are in A.P.
If $x _{1} + x _{7} + x _{10} = -6$ and $x _{3} + x _{8} + x _{12} = -11$, then $x _{3} + x _{8} + x _{22} = ?$

  1. $-21$

  2. $-15$

  3. $-18$

  4. $-31$


Correct Option: A
Explanation:

Let the first term be $a$ and common difference be $d$

$x _{1}+x _{7}+x _{10}=-6$
$\Rightarrow (a)+(a+6d)+(a+9d)=-6$
$\Rightarrow 3a+15d=-6 \rightarrow \text{eqn}(1) $

$x _{3}+x _{8}+x _{12}=-11$
$\Rightarrow (a+2d)+(a+7d)+(a+11d)=-11$
$\Rightarrow 3a+20d=-11 \rightarrow \text{eqn}(2)$
Solving eqn (1) and (2), we get $a=3$ and $d=-1$

Now, $x _{3}+x _{8}+x _{22}=3a+30d = -21$

If the $n^{th}$ term of an AP be $(2n-1)$, then the sum of its first n terms will be.

  1. $n^2-1$

  2. $(2n-1)^2$

  3. $n^2$

  4. $n^2+1$


Correct Option: C
Explanation:
$a _n=(2n-1)$
$\Rightarrow$  $a _1=2\times 1-1=1$
$\Rightarrow$  $a _2=2\times 2-1$
            $=4-1$
            $=3$
$\Rightarrow$  $d=a _1-a _1=3-1$
$\therefore$  $d=2$
$\Rightarrow$  $S _1=\dfrac{n}{2}[2a _1+(n-1)d]$
           
            $=\dfrac{n}{2}[2(1)+(n-1)2]$

            $=\dfrac{n}{2}[2+2n-2]$

            $=\dfrac{n}{2}\times 2n$

            $=n^2$