Tag: maths

Questions Related to maths

If $a,b,c$ are in $A.P.$, then the straight lines $ax+by+c=0$ wil always pass through the point ..........

  1. $(1,2)$

  2. $(1,5)$

  3. $(3,2)$

  4. None of these


Correct Option: A
Explanation:

$A,B, C$ in $AP$


$ax + by + c = 0$ __(I)


$\therefore 2b = a + c$

$a - 2b + c = 0$ __(II)

comparing (I) and (II),

$x = 1, y = -2$

$\therefore (1, -2)$ is the fixed point

An AP consists of $15$ terms. The three middle most terms is $69$ and the last three terms is $123$. Find the A.P.

  1. 2,5,8,11.....44

  2. 2,4,8,....62

  3. 2,3,4....16

  4. none


Correct Option: A
Explanation:

The $three$ middle most terms of $15$ terms is $69.$

${a} _{7}+{a} _{8}+{a} _{9}=69$
${a} _{13}+{a} _{14}+{a} _{15}=123$
$a+6d+a+7d+a+8d=69\Longrightarrow 3a+21d=69$
$a+12d+a+13d+a+14d=123\Longrightarrow 3a+39d=123$

$3a+21d=69$
$3a+39d=123$

          $18d=54,\d=3,\a=2.$
$2,5,8,11,\dots 44.$  

If $x,y,z$ are $p^{th},q^{th}$ and $r^{th}$ terms respectively of a $G.P$., then $x^{q-r}\cdot y^{r-p}\cdot z^{p-q}$ is simplified to 

  1. $1$

  2. $0$

  3. $xyz$

  4. $None\ of\ these$


Correct Option: A
Explanation:

$x = A{R^{p - 1}}$

$y = A{R^{q - 1}}$
$z = A{R^{r - 1}}$
${x^{q - r}}{y^{r - p}}{z^{p - q}}$
$ = {\left( {A{R^{p - 1}}} \right)^{q - r}}{\left( {A{R^{q - 1}}} \right)^{r - p}}{\left( {A{R^{r - 1}}} \right)^{p - q}}$
$ = {A^{\left( {q - r + r - p + p - q} \right)}}{R^{\left[ {\left( {p - 1} \right)\left( {q - r} \right) + \left( {q - 1} \right)\left( {r - p} \right) + \left( {r - 1} \right)\left( {p - q} \right)} \right]}}$
$ = {A^0}{R^{\left[ {pq - pr - q + r + qr - pq - r + p + pr - qr - p + q} \right]}}$
$ = {A^0}{R^0}$
$=1$

If $f _n(x)=\frac{sinx}{cos3x}+\frac{sin3x}{cos3^2x}+\frac{sin3^2x}{cos3^3x}+..........+ \frac{sin3^{n-1}x}{cos3^nx}$ then $f _2$

  1. $0$

  2. $1$

  3. $-1$

  4. $3$


Correct Option: C

The largest term to common to the sequences $1,11,21,31,... to 100$ terms and $31,36,41,46, ...to 100$ terms is 

  1. $511$

  2. $471$

  3. $281$

  4. None of these


Correct Option: A
Explanation:
 The first sequence is $1+11+21+31+41+51+61+71+81+91+...............$ upto $100th$ terms
last term will be =$1+(100-1)\times 10=991$
and for the second sequence  $31+36+41+46+51+56+.................$ upto $100th$ term 
last term will be=$31+(100-1)\times 5=526$
Now,
we have the common terms as $31+51+71$ and $n$ term of this sequence wil be =$31+(n-1)\times 20$
$=>20n+11$
and this will be less than $526$
So,
$=>20n+11<526$
$=>20n<526-11$
$=>n<\dfrac{515}{20}=25.75$
so $n=25$
Hence the largest common term is =$20\times 25\times 11=511$

If $a^{2},b^{2},c^{2}$ are in $AP$, then which of the following are in $AP$?

  1. $(b+c),(c+a),(a+b)$

  2. $\dfrac{1}{b+c},\dfrac{1}{c+a},\dfrac{1}{a+b}$

  3. $\dfrac{b+c}{a},\dfrac{c+a}{b},\dfrac{a+b}{c}$

  4. $\dfrac{1}{a^{2}},\dfrac{1}{a^{2}},\dfrac{1}{c^{2}}$


Correct Option: B
Explanation:
$2b^2=a^2+c^2$
$b^2+b^2=a^2+c^2$
$b^2-a^2=c^2-b^2$
$(b-a)(b+a)=(c-b)(c+b)$
$\dfrac { (b-a) }{ (c+b) } =\dfrac { (c-b) }{ (b+a) } $
Dividing both sides by $(c + a)$

$\dfrac { (b-a) }{ (c+b)(c+a) } =\dfrac { (c-b) }{ { (b+a)(c+a) } } $

$\dfrac { (b+c)-(c+a) }{ (b+c)(c+a) } =\dfrac { (c+a)-(a+b) }{ (a+b)(c+a) } $

$\dfrac { 1 }{ (c+a) } -\dfrac { 1 }{ b+c } =\dfrac { 1 }{ (a+b) } -\dfrac { 1 }{ c+a } $

$\dfrac { 2 }{ (c+a) } =\dfrac { 1 }{ (a+b) } -\dfrac { 1 }{ (b+c) } $

Therefore $\dfrac { 1 }{ (a+b) } ,\dfrac { 1 }{ (b+c) } ,\dfrac { 1 }{ (c+a) } $ are in AP.

If $a,b$ and $c$ are in $A.P.,$ then $\dfrac{(a-c)^{2}}{b^{2}-ac}=$ ?

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: B
Explanation:

$a,b,c$ are in A.P 

So $2b=a+c$
Then
$\cfrac { { \left( a-c \right)  }^{ 2 } }{ { b }^{ 2 }-ac } $
$=\cfrac { { \left( a-c \right)  }^{ 2 } }{ { b }^{ 2 }-ac } $
$\cfrac { { a }^{ 2 }+{ c }^{ 2 }-2ac }{ { \left( \cfrac { a+c }{ 2 }  \right)  }^{ 2 }-ac } =\cfrac { { a }^{ 2 }+{ c }^{ 2 }-2ac }{ \left( \cfrac { { a }^{ 2 }+{ c }^{ 2 }-2ac }{ 2 }  \right)  } =2$

If $a, b, c$ are in $A.P.$ then $\left|\begin{matrix} x+1 & x+2 & x+a \ x+2 & x+3 & x+b \ x+3 & x+4 & x+c \end{matrix}\right|$

  1. $1$

  2. $0$

  3. $-1$

  4. $2$


Correct Option: B
Explanation:
$a, b, c in A.P.$
$b=a+d$
$c=a+2d$ where $d$is the common difference 
$=\begin{vmatrix} x+1 & x+2 & x+d \\ x+2 & x+3 & x+a+d \\ x+3 & x+4 & x+a+2d \end{vmatrix}$
$=\begin{vmatrix} 1 & 2 & a \\ 2 & 3 & a+d \\ 3 & 4 & a+2d \end{vmatrix}+\begin{vmatrix} x & x & x \\ x & x & x \\ x & x & x \end{vmatrix}\\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \downarrow \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad 0$
$=\begin{vmatrix} 1 & 2 & a \\ 2 & 3 & a+d \\ 3 & 4 & a+2d \end{vmatrix}$
$1\begin{vmatrix} 3 & a+d \\ 4 & a+2d \end{vmatrix}-2\begin{vmatrix} 2 & a+d \\ 3 & a+2d \end{vmatrix}+a\begin{vmatrix} 2 & 3 \\ 3 & 4 \end{vmatrix}$
$=3a+6d-4a-4d-4a-8d+6a+6d-a$
$=(3a-4a-4a+6a-a)+(6d-4d-3d+6d)$
$=0+0$
$=0$
$B$ is correct


















If $x \in R,$ the numbers ${2^{1 + x}} + {2^{1 - x}},b/2,{36^x} + {36^{ - x}}$ form an A.P. , then $b$ may lie in the interval

  1. $\left[ {16,\infty } \right)$

  2. $\left[ {6,\infty } \right)$

  3. $\left[ {\infty , - 6} \right)$

  4. $\left[ {6,12} \right)$


Correct Option: B
Explanation:

Given 


$2^{1+x}+2^{1-x}, \dfrac b2 ,36^x+36^{-x}$ form an AP

The condition to be in AP is

$2\times \left(\dfrac b2\right)=2^{1+x}+2^{1-x}+36^x+36^{-x}$

$b=2.2^x+2.\dfrac1{2^x}+36^x+\dfrac 1{36^x}$

$b=2\left(2^x+\dfrac 1{2^x}\right)+\left( 36^x+\dfrac 1{36^x}\right)$

Let $2^x=y \quad 36^x=k$

$b=2\left(y+\dfrac 1y\right)+\left(k+\dfrac 1k\right)$

The min value of $f(x)+\dfrac 1{f(x)}$ is $2$

The max value is $\infty$

$\implies 2(2)+2 \leq b\leq 2(\infty)+(\infty)$

$\implies 6\leq b\leq\infty$

$\implies b\in [6,\infty)$

State the whether given statement is true or false
For a positive integer n,let $S(n)=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.....+\dfrac{1}{2^n-1}$. Then prove that $S(100)<100$. 

  1. True

  2. False


Correct Option: A
Explanation:

We have,

$S(n)=1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+.....+\dfrac{1}{2^n-1}$

$S(n)=1+\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+.......\right)+.....+\dfrac{1}{2^n-1}$

$S(n)=1+\left(\dfrac{1}{2}+\dfrac{1}{2^2-1}\right)+\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{2^3-1}\right)+\left(\dfrac{1}{8}+\dfrac{1}{9}+.......+\dfrac{1}{2^4-1}\right)+.....+\dfrac{1}{2^n-1}$

Since,
$\left(\dfrac{1}{2}+\dfrac{1}{3}\right)<1$

$\left(\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}\right)<1$

$\dfrac{1}{2^n-1}<1$

So,
$S(n)=1+1+1+......+1\ n(times)$
$S(n)<n$

Therefore,
$S(100)<100$

Hence, this is the answer.