Tag: maths

Questions Related to maths

Choose the rational number which does not lie between rational numbers $\dfrac{3}{5}$ and $\dfrac{2}{3}$.

  1. $\dfrac{46}{75}$

  2. $\dfrac{47}{75}$

  3. $\dfrac{49}{75}$

  4. $\dfrac{50}{75}$


Correct Option: D
Explanation:

All the options have denominator $75$. Hence, let us convert into equivalent fractions having denominator $75$. 
$\dfrac{3}{5} $ $=\dfrac{3\times 15}{5\times 15} $ $=\dfrac{45}{75}$

$\dfrac{2}{3}$ $=\dfrac{2\times 25}{3\times 25}$ $=\dfrac{50}{75}$

Hence, $\dfrac{50}{75}$ does not lie between the given numbers.

Rationalising the denominator of $\dfrac {5}{\sqrt 3-\sqrt 5}$ is -

  1. $(\frac {5}{2}(\sqrt 3+\sqrt 5)$

  2. $(-\frac {5}{2}(\sqrt 3+\sqrt 5)$

  3. $(\frac {5}{2}(\sqrt 3-\sqrt 5)$

  4. $(-\frac {5}{2}(\sqrt 3-\sqrt 5)$


Correct Option: B
Explanation:

here, $\dfrac {5}{\sqrt 3-\sqrt 5}$

$=\dfrac {5}{\sqrt 3-\sqrt 5}\times \dfrac {\sqrt 3+\sqrt 5}{\sqrt 3+\sqrt 5}$

$=\dfrac {5(\sqrt 3+\sqrt 5)}{3-5}$


$=-\dfrac {5}{2}(\sqrt 3+\sqrt 5)$

The rational number lies between $\dfrac{3}{7}$ and $\dfrac{2}{3}$ is

  1. $\dfrac{2}{5}$

  2. $\dfrac{4}{7}$

  3. $\dfrac{3}{7}$

  4. $\dfrac{3}{3}$


Correct Option: A

A train of length 180 m crosses a man standing on a platform in 12 seconds and cross another train coming from opposite direction in 12 sec. If the second train running at 2/3 rd speed of the firstthen find the length of the second train?

  1. 56

  2. 120

  3. 20

  4. 44


Correct Option: B
Explanation:

Length of the first train$=180m$


 Time taken by  the train to cross the man standing on the platform$=12s$


Speed of the first train$=\dfrac{180}{12}$

                                      $=15m/s$

Speed of the second train$=\dfrac{2}{3}\times15$

                                            $=10m/s$

Relative speed$=15+10$

                          $=25m/s$
 
Let the length of the train be $y$ metres.

$Distance =Speed\times time$

$y+180=25\times12$

$y+180=300$

$y=300-180$
$y=120$
So, the length of the second train$=120m$

 Rational numbers between $\displaystyle \frac{3}{8}$ and $\displaystyle \frac{7}{12}$ are

  1. $\displaystyle \frac{3}{8}, \frac{41}{96}, \frac{23}{48}, \frac{7}{12}$

  2. $\displaystyle \frac{3}{8}, \frac{41}{196}, \frac{23}{48}, \frac{7}{12}$

  3. $\displaystyle \frac{3}{8}, \frac{41}{96}, \frac{23}{148}, \frac{7}{12}$

  4. none of the above


Correct Option: A
Explanation:

A rational number between two numbers $ a $ and $ b = \dfrac {(a +

b)}{2} $
So,
a rational number between $\dfrac {3}{8} $ and $ \dfrac {7}{12}$

$ = \dfrac {\dfrac {3}{8} + \dfrac {7}{12}}{2} = \dfrac {23}{48} $

Now, another rational number
between $ \dfrac {3}{8} $ and $ \dfrac {23}{48} $

$= \dfrac {\dfrac {3}{8} + \dfrac {23}{48}}{2} = \dfrac {41}{96} $ 

Hence, required two rational numbers between $\dfrac {3}{8} $ and $ \dfrac {7}{12} $ are $\dfrac {3}{8} ,\dfrac {41}{96}, \dfrac {23}{48}, \dfrac {7}{12}$

__________ are rational numbers between between 5 and -2.

  1. $\displaystyle 5, \frac{33}{4},\ \frac{3}{2}, -\frac{1}{4}, -2$

  2. $\displaystyle  \frac{13}{4},\ \frac{3}{2}, -\frac{1}{4} $

  3. $\displaystyle 5, \frac{13}{4},\ \frac{13}{2}, -\frac{1}{4}, -2$

  4. none of the above


Correct Option: B
Explanation:

A rational number between two numbers $ a $ and $ b = \dfrac {(a + b)}{2} $

So, a rational number between $ 5 $ and $ - 2 = \dfrac

{( 5 - 2 )}{2} = \dfrac {3}{2} $


Now, another rational number between $ 5 $ and $ \dfrac {3}{2} =

\dfrac {( 5 + \dfrac {3}{2})}{2} = \dfrac {13}{4} $

Another rational number between $ \dfrac {3}{2} $ and $ -2 =

\dfrac {( \dfrac {3}{2}) - 2}{2} = -\dfrac {1}{4} $

 $ \therefore \dfrac {13}{4},  \dfrac {3}{2}, - \dfrac {1}{4} $  are
 the rational numbers between $ 5 $ and $ -2 $

________ are rational numbers between $\displaystyle \frac{1}{3}$ and $\displaystyle \frac{1}{4}$

  1. $\displaystyle \frac{1}{3}, \frac{7}{64}, \frac{13}{48}, \frac{1}{4}$

  2. $\displaystyle \frac{1}{3}, \frac{7}{24}, \frac{13}{48}, \frac{1}{4}$

  3. $\displaystyle \frac{1}{3}, \frac{7}{24}, \frac{13}{68}, \frac{1}{4}$

  4. none of the above


Correct Option: B
Explanation:

A

rational number between two numbers $ a $ and $ b = \frac {(a +

b)}{2} $

So,
a

rational number between $\frac {1}{3} $ and $ \frac {1}{4} = \frac {(\frac {1}{3} + \frac {1}{4})}{2} = \frac {7}{24} $

Now, another rational number
between $ \frac {7}{24} $ and $ \frac {1}{4} = \frac {(\frac {7}{24} + \frac {1}{4})}{2} = \frac {13}{48} $



Hence, required two rational numbers between $\frac {1}{3} $ and $ \frac {1}{4} $ are $\frac {1}{3} ,\frac {7}{24}, \frac {13}{48}, \frac {1}{4}$

 ________ are rational numbers between $\displaystyle -\dfrac{3}{4}$ and $\displaystyle \dfrac{1}{2}.$

  1. $\dfrac{-7}{16}, \dfrac{-1}{8}, \dfrac{9}{16}$

  2. $\dfrac{-15}{16}, \dfrac{-1}{8}, \dfrac{3}{16}$

  3. $\dfrac{-7}{16}, \dfrac{-1}{8}, \dfrac{3}{16}$

  4. none of the above


Correct Option: C
Explanation:
A rational number between two numbers $ a $ and $ b = \dfrac {(a + b)}{2} $ 

So,
a rational number between $ - \dfrac {3}{4} $ and $ \dfrac {1}{2} $
$= \dfrac {-\dfrac {3}{4} + \dfrac {1}{2}}{2} = - \dfrac {1}{8} $

Now,
another rational number between $ - \dfrac {3}{4} $ and $ - \dfrac {1}{8} $
$=\dfrac {- \dfrac {3}{4} - \dfrac {1}{8}}{2} = - \dfrac {7}{16} $ 

Another rational number between $ - \dfrac {1}{8} $ and $ \dfrac {1}{2} =$

$\dfrac { - \dfrac {1}{8} + \dfrac {1}{2}} {2} =  \dfrac {3}{16} $ 

Hence, required three rational numbers between $ - \dfrac {3}{4} $ and $  \dfrac {1}{2} $ are $ - \dfrac {3}{4}, - \dfrac {7}{16},  - \dfrac {1}{8}, \dfrac {3}{16}, \dfrac {1}{2} $

The rational number lying between the numbers $\displaystyle \frac{1}{3}$ and $\displaystyle \frac{3}{4}$ are

  1. $\displaystyle \frac{97}{300}$,$\displaystyle \frac{299}{500}$

  2. $\displaystyle \frac{99}{300}$,$\displaystyle \frac{301}{400}$

  3. $\displaystyle \frac{95}{300}$,$\displaystyle \frac{301}{400}$

  4. $\displaystyle \frac{117}{300}$,$\displaystyle \frac{287}{400}$


Correct Option: D
Explanation:

To insert rational numbers between $2$ numbers, we will arrange the options and check if they are in ascending order.
$\dfrac { 1 }{ 3 } { ? }\dfrac { 117 }{ 300 } \ \Longrightarrow 300<351\ \qquad \dfrac { 3 }{ 4 } { ? }\dfrac { 287 }{ 400 } \ \Longrightarrow 1200>1148$
They are in ascending order, i.e., $\dfrac { 1 }{ 3 } ,\dfrac { 117 }{ 300 } ,\dfrac { 287 }{ 400 } ,\dfrac { 3 }{ 4 } $
From the given options only option $D$ satisfies this condition. Hence, $D$ is the answer.

Let a, b, c be positive integers such that $\frac {a\sqrt 2+b}{b\sqrt 2+c}$ is a rational number, then which of the following is always an integers?

  1. $\frac {2a^2+b^2}{2b^2+c^2}$

  2. $\frac {a^2+b^2-c^2}{a+b-c}$

  3. $\frac {a^2 _2b^2}{b^2+2c^2}$

  4. $\frac {a^2+b^2+c^2}{a+c-b}$


Correct Option: D