Tag: maths

Questions Related to maths

What will be the Remainder when $3x^{3} - 2x^{2} - 7x + 6$ is divided by $x + 1$?

  1. $4$

  2. $5$

  3. $8$

  4. $0$


Correct Option: C
Explanation:

Let $f(x)=3x^3-2x^2-7x+6$

To find out reminder when equation is divided by $x+1$ we should calculate $f(-1)$
$f(-1)=3(-1)^3-2(-1)^3-7(-1)+6$
            $=13-5=8$

A body falling from rest under gravity passes a certain point $P$.It was a distance of $400m$ from P and $4$ sec prior to passage through $P$ If $g=10m/sec^2$,then the height above the point $"P"$ from where the body began to fall is ?

  1. $900m$

  2. $320m$

  3. $680m$

  4. $720m$


Correct Option: B
Explanation:
Distance travelled $=400\ m$.
Time$=4\ sec$
$B=10m/s^{2}$
$s=ut+1/2 at^{2}$
$400=4u-1/2\times 10\times 16\times 5$
$400=4u-80$
$4u=480$
$u=120$
At highest point
$V=0$
${u}^{2}=2\times g\times h$
$120\times 120=2\times 10\times h$
$h=720$
This height is from $400\ mtr$ below $P$ 
So height above $P$ is $720-400=320\ mtrs$

The remainder when $x^3 + 4x^2 - 7x + 6$ is divided by $(x - 1)$ is

  1. $4$

  2. $0$

  3. $-4$

  4. $3$


Correct Option: A
Explanation:

Let $f\left( x \right) =x^{ 3 }+4x^{ 2 }-7x+6$
As $f\left( x \right) $ is divided by $x-1$, substituting $x=1$ in $f\left( x \right) $ we get
$f\left( 1 \right) =1^{ 3 }+4\cdot1^{ 2 }-7\cdot1+6=4$
Hence, $4$ is the remainder.

What will be the Quotient when $4x^{3} - 8x^{2} - x + 5$ is divided by $2x - 1$?

  1. $2x^{2} - 3x - 2$

  2. $3x^{2} - 6x - 2$

  3. $4x^{2} - 6x +4$

  4. $2x^{2} - 6x - 2$


Correct Option: A
Explanation:

Given: equation $4x^3-8x^2-x+5$

To find the quotient when divided by $2x-1$
Sol: $2x-1)\overline{4x^3-8x^2-x+5}(2x^2-3x-2)\\quad\quad \quad 4x^3-2x^2\\quad\quad\quad \overline{\quad \quad -6x^2-x}\\quad\quad\quad\quad\quad- 6x^2+3x\\quad\quad\quad\overline{\quad\quad\quad\quad \quad -4x+5}\\quad\quad\quad\quad\quad\quad \quad \quad- 4x+2\\quad\quad\quad\quad\overline {\quad\quad\quad\quad\quad\quad\quad 3} $

The rational number is not lying between $\dfrac {5}{16}$ and $\dfrac {1}{2}$ is _________.

  1. $\dfrac {3}{8}$

  2. $\dfrac {7}{16}$

  3. $\dfrac {1}{4}$

  4. $\dfrac {13}{32}$


Correct Option: C

Find 9 rational numbers between  $2$ and $3$

  1. $2 < 2.1 < 2.2 < 3.3 < 2.4 < ... < 2.9 < 3$

  2. $2 < 4.1 < 2.2 < 2.3 < 2.4 < ... < 2.9 < 3$

  3. $2 < 2.1 < 2.2 < 2.3 < 2.4 < ... < 2.9 < 3$

  4. $2 < 2.1 < 2.2 < 2.3 < 2.4 < ... < 0.9 < 3$


Correct Option: C
Explanation:

$2 < 2.1=(2+0.1) < 2.2=(2.1+0.1) < 2.3=(2.2+0.1) < 2.4=(2.3+0.1) < ... < 2.9=(2.8+0.1) < 3=(2.9+0.1)$


$2 < 2.1 < 2.2 < 2.3 < 2.4 < ... < 2.9 < 3$

Write two rational numbers between $\displaystyle \sqrt{2}$ and $\displaystyle \sqrt{3}.$

  1. $1.5,\ 1.6$

  2. $1.4,\ 1.6$

  3. $1.5,\ 1.8$

  4. none of the above


Correct Option: A
Explanation:

We know that, $ \sqrt {2} = 1.414

$ and $ \sqrt {3} = 1.732 $

Hence two rational numbers between $ 1.414 $ and $ 1.732

$  can be $ 1.5 (= \frac {3}{2}) $ and $ 1.6 (= \frac {16}{10}= \frac {8}{5}) $

Write three rational numbers between $\displaystyle \sqrt{3}$ and $\displaystyle \sqrt{5}$.

  1. 1.8,2 and 2.2

  2. 1.6,2 and 2.2

  3. 1.8,2.2 and 2.4

  4. none of the above


Correct Option: A
Explanation:

We know that, $ \sqrt {3} = 1.732$ and $ \sqrt {5} = 2.236 $

Hence three rational numbers between $ 1.732 $ and $ 2.236$  can be $ 1.8 \left(= \dfrac {18}{10}\right)  $ , $ 2 $ and $ 2.2 \left(= \dfrac {22}{10}\right) $.

Which one of the following is the rational number lying between $\displaystyle \frac{6}{7} \ and \ \frac{7}{8}?$

  1. $\displaystyle \frac{3}{4}$

  2. $\displaystyle \frac{99}{122}$

  3. $\displaystyle \frac{95}{112}$

  4. $\displaystyle \frac{97}{112}$


Correct Option: D
Explanation:

Required rational number $\displaystyle =\frac{1}{2}\left ( \frac{6}{7}+\frac{7}{8} \right )=\frac{1}{2}\left ( \frac{48+49}{56} \right )=\frac{97}{112}$
Hence option (d) is correct

The number of integers between $\displaystyle -\sqrt{8}: and: \sqrt{32} $ is

  1. 5

  2. 6

  3. 7

  4. 8


Correct Option: D
Explanation:
We will find the number of integers as follows,
√8 = 2.8 ( approximately )
- √8 = - 2.8
√32 = 5.6 ( approximately )
Now integers between -2.8 and 5.6 are
-2, -1, 0, 1, 2, 3, 4, 5
and a total of 8 numbers
Option D is the correct answer.