Tag: maths

Questions Related to maths

Product of $7,986$ and $548$ is

  1. $1,35,562$

  2. $43,76,328$

  3. $1,35,862$

  4. $1,35,462$


Correct Option: B
Explanation:

Unit digits of both numbers are $6$ and $8$. 

On multiplying the unit digits we get,
$6\times 8=48$
So, the unit digit of the product will be $8$.
There is only one option whose unit digit is $8$ i.e. option B.
So, correct answer is opiton B.

Find the value of $4132\times27$.
  1. $111564$

  2. $121564$

  3. $131564$

  4. $1331564$


Correct Option: A
Explanation:
   4 1 3 2
x       2 7
--------------
 2 8 9 2 4
 8 2 6 4
---------------
 1  1  5 6 4
So the correct answer will be option A

Place value of a digit increases by ______ times as it moves place by place from right to left.

  1. $100$

  2. $\displaystyle \frac{1}{100}$

  3. $10$

  4. $1000$


Correct Option: C
Explanation:

Place value of a digit increases by $10$ times as it moves from right to left.

156 $\times$ ____ = 0

  1. 1

  2. 0

  3. 156

  4. -1


Correct Option: B
Explanation:

156 $\times$ 0 = 0

$(32) \times (-4) \times (-3) \times 0 \times (-6)  $ is equal to 

  1. +27,648

  2. +276,480

  3. 0

  4. -27,648


Correct Option: C
Explanation:

The resultant product of $3$ negative signs would be negative.

But the numbers are multiplied with $0$.
So, the resultant product be $0$.
$\therefore (32) \times (-4) \times (-3) \times 0 \times (-6) = 0$

Find the value of $x$.
$\displaystyle \left ( -\frac {1}{4} \right )^{-3} \times \left ( \frac {1}{4} \right )^{4} \div 4^{-2}=-(4^{10x+1})$

  1. $\displaystyle -\frac {2}{5}$

  2. $4$

  3. $\displaystyle \frac {-3}{5}$

  4. $0$


Correct Option: D
Explanation:

$
-{ \frac { 1 }{ 4 }  }^{ -3 }{ \times \frac { 1 }{ 4 }  }^{ 4 }\div { 4 }^{ -2 }{ \quad =\quad -4 }^{ (10x+1) }\ \ -{ 4 }^{ 3 }{ \times 4 }^{ -4 }\times { 4 }^{ 2 }{ \quad =\quad -4 }^{ (10x+1) }\ { -4 }^{ 3-4+2 }{ \quad =\quad -4 }^{ (10x+1) }\ { -4 }^{ 1 }{ \quad =\quad -4 }^{ (10x+1) }\ 1\quad =\quad 10x\quad +1\ 10x\quad =\quad 0\ x\quad =\quad 0
$

The average age of a family of 6 members 4 years ago was 25 years. Meanwhile a child was born in this family and still the average age of the whole family is same today. The present age of child is ......

  1. 2 years

  2. $1 \displaystyle \frac{1}{2} $ years

  3. 1 years

  4. Data insufficient


Correct Option: C
Explanation:

Total age of 6 family members four year ago =$25\times 6=150$years
Total age of 6 family member now=150+$4\times 6=150+24=174$years
Total age of 6 family member and child =$25\times 7=175$year
Age of child =175-174=1 year

Solve 45 % of 1500 + 35 % of 1700 = ? % of 3175

  1. 30

  2. 35

  3. 45

  4. 40


Correct Option: D
Explanation:

45 % of 1500 + 35 % of 1700 = ? % of 3175
Or 
$\frac{45}{100}\times 1500+\frac{35}{100}\times 1700= \frac{x}{100}\times 3175$
Let x is new %

Or $45\times 1500+35\times 1700=3175\times x$
OR 67500+59500=3175x
Or x=$\frac{127000}{3175}=40%$

$102 \times 103$

  1. 10506

  2. 10505

  3. 1050

  4. 10504


Correct Option: A
Explanation:

$(100 + 2) \times (100 + 3)$
           [Using $(x +a) (x+b)=x^2+(a+b)x+ ab$]
$ = (100)^2 + (2 + 3) \times 100 + 2 \times 3$
$ = 10000 + 5 \times 100 + 6 = 10000 + 500 + 6 = 10506$

A pineapple costs rs. 7. A watermelon cots rs. 5. X spends rs. 38 on these fruits. The number of pineapples purchased is _______.

  1. 2

  2. 3

  3. 4

  4. Data inadequate


Correct Option: C
Explanation:

Let the number of pineapple and watermelon be x and y
Then 7x+5y=38 (given cost of pineapple and watermelon is Rs 7and Rs 5
Or 5y=38-7x
Or $y=\frac{38-7x}{5}$ 
clearly y is whole number only when (38-7x) is divisible by 5
This happens when x=4