Tag: maths

Questions Related to maths

The sum of  first eight odd numbers is 

  1. 64

  2. 74

  3. 80

  4. 95


Correct Option: A
Explanation:

The sum of the first odd numbers is,


$1+3+5+7+9+11+13+15= 64$

So option A is the correct answer

$121$ can also be represented as ?

  1. $40+41$

  2. $11^2$

  3. $120+3$

  4. All of these


Correct Option: B
Explanation:

$11 \times 11= 121$ 

$= 11^2$
Thus option $B$ is correct

$5^2=?$

  1. $25$

  2. $15$

  3. $14$

  4. $12+13$


Correct Option: A,D
Explanation:

52 = 5  × 5 = 25 = 12 + 13

The value of $3^2$ is

  1. $9$

  2. $4+5$

  3. $8$

  4. None of these


Correct Option: A,B
Explanation:

$3^2$ means taking square of $3$, i.e. $3\times 3=9$

$9$ can be written as addition of $9=4+5$.
Hence, options A and B are correct.

$24+25=?$

  1. $49$

  2. $34$

  3. $7^2$

  4. $36$


Correct Option: A,C
Explanation:

24 + 25 = 49 = 72

Which of the following option matches with $361$?

  1. $360+1$

  2. $19^2$

  3. $180+181$

  4. None of these


Correct Option: A,B,C
Explanation:

361 = 19 × 19 = 192
361 = 360 + 1 = 180 + 181

Evaluate: $220+221$

  1. $437$

  2. $441$

  3. $21^2$

  4. None of these


Correct Option: B,C
Explanation:

220 + 221 = 441 = 21  × 21 = 212

The expression $(x + 1)(x + 2)(x + 3)(x + 4) + 1$ is a 

  1. perfect square

  2. cube

  3. quartic polynomial

  4. none of the above


Correct Option: A
Explanation:

Solving

$(x+1)(x+2)(x+3)(x+4)+1$
$Multiplying\ first\ bracket\ with\ last\ and\ second\ to\ the\ third\ one$
$(x^2+5x+4)(x^2+5x+6)+1$
$Replacing\ x^2+5x+4\ by\ 'B'$
$(B)(B+2)+1$
$B^2+2B+1$
$(B+1)^2=(x^2+5x+5)^2$
Hence $L.H.S.$ is the $Perfect\ Square$ of $(x^2+5x+5)$



$\cfrac { { \left( 963+476 \right)  }^{ 2 }+{ \left( 963-476 \right)  }^{ 2 } }{ \left( 973\times 963+476\times 476 \right)  } =$?

  1. $1449$

  2. $497$

  3. $2$

  4. $4$

  5. None of these


Correct Option: C
Explanation:

Given Exp.$=\cfrac { { \left( a+b \right)  }^{ 2 }+{ \left( a-b \right)  }^{ 2 } }{ \left( { a }^{ 2 }+{ b }^{ 2 } \right)  } =\cfrac { 2\left( { a }^{ 2 }+{ b }^{ 2 } \right)  }{ \left( { a }^{ 2 }+{ b }^{ 2 } \right)  } =2$

By what least number $21600$ must be multiplied to make it a perfect cube?

  1. $6$

  2. $10$

  3. $30$

  4. $60$


Correct Option: B
Explanation:

$21600 $ can be factorized as $6\times 6\times 6\times 10\times 10$

To make it perfect cube, it must be multiplied by $10$.