Tag: maths
Questions Related to maths
The number of $2\times 2$ matrices $A=\left[ \begin{matrix} a & b \ c & d \end{matrix} \right] $ for which ${ \left[ \begin{matrix} a & b \ c & d \end{matrix} \right] }^{ -1 }$ $=\left[ \begin{matrix} \frac { 1 }{ a } & \frac { 1 }{ b } \ \frac { 1 }{ c } & \frac { 1 }{ d } \end{matrix} \right] $, $(a,b,c,d\ \epsilon \ R)$ is
Let A=$\left( {\begin{array}{{20}{c}}{ - 5}&{ - 8}&{ - 7}\3&5&4\2&3&3\end{array}} \right),B = \left( {\begin{array}{{20}{c}}x\y\z\end{array}} \right)$. If AB is scalar $\left( { \ne 0} \right)$ multiple of B, then x+y=
If $A^{-1} = \alpha I + \beta I$ where $\alpha, \beta \in R$, then $\alpha + \beta$ is equal to (where $A^{-1}$ denotes inverse of matrix $A$)-
If $A=\begin{bmatrix} \alpha & 0 \ 1 & 1 \end{bmatrix}$ and $B=\begin{bmatrix} 1 & 0 \ 5 & 1 \end{bmatrix}$, find the values of $\alpha$ for which $A^2=B$.
Let $P=\begin{bmatrix} \cos { \dfrac { \pi }{ 9 } } & \sin { \dfrac { \pi }{ 9 } } \ -\sin { \dfrac { \pi }{ 9 } } & \cos { \dfrac { \pi }{ 9 } } \end{bmatrix}$ and $\alpha,\ \beta,\ \gamma$ be non-zero real numbers such that $\alpha P^{6}+\beta P^{3}+\gamma 1$ is the zero matrix. Then, $(\alpha^{2}+\beta^{2}+\gamma^{2})^{(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)}$ is
Consider three matrices $A=\begin{bmatrix} 2 & 1 \ 4 & 1 \end{bmatrix}, B=\begin{bmatrix} 3 & 4 \ 2 & 3 \end{bmatrix}$ and $C=\begin{bmatrix} 3 & -4 \ -2 & 3 \end{bmatrix}$. Then the value of the sum $tr(A)+tr\left(\dfrac{ABC}{2}\right)+tr\left(\dfrac{A(BC)^{2}}{4}\right)+tr\left(\dfrac{A(BC)^{3}}{8}\right)+....+\infty$ is
If $A(\theta) = \begin{bmatrix}\sin \theta & i \cos \theta\ i \cos \theta & \sin \theta\end{bmatrix}$, then which of the following is not true?
Write the following transformation in matrix form
$\quad x _1 = \displaystyle\frac{\sqrt 3}{2}y _1 + \displaystyle\frac{1}{2}y _2; \quad x _2 = -\displaystyle\frac{1}{2}y _1 + \displaystyle\frac{\sqrt 3}{2}y _2$.
Hence find the transformation in matrix form which expresses $y _1, y _2$ in terms of $x _1, x _2$.
If $
A=\left[ \begin{array}{ll}{x} & {1} \ {1} & {0}\end{array}\right]
$ and $
A^{2}=I
$, $
A^{-1}
$ is equal to ...............
If A and B are any $2\times2$ matrices, then det. (A+B) =0 implies