Tag: maths
Questions Related to maths
lf $a=\displaystyle \cos\frac{2\pi}{7}+i\sin\frac{2\pi}{7}, \alpha=a+a^{2}+a^{4}$ and $\beta=a^{3}+a^{5}+a^{6}$, then $\alpha, \beta$ are the roots of the equation
Suppose A is a complex number and $ n \in N, $ such that $A^{n} = (A + 1)^{n} =1, $ then the least value of $n$ is
If $1,$$\alpha _{1},\alpha _{2,} \alpha _{3},\alpha _{4}$ be the roots of $z^{5}-1=0$ and $\omega $ be an imaginary cube root of unity,
If $A=\left[ \begin{matrix} 2 & -3 \ -4 & 7 \end{matrix} \right] $, then ${2A}^{-1}=$
Multiply the fourth row by $3$.
$\begin{bmatrix}3&4&2&11\9&1&0&0\0&1&0&2\0&0&6&1\end{bmatrix}$
In echelon form, which of the following is incorrect?
Let $A$ be a matrix of order $3\times 3$ such that $\left| \vec { A } \right| =1$. Let $B=2{ A }^{ -1 }$ and $C=\dfrac { adj.A }{ 2 }$. Then the value of $\left| { AB }^{ 2 }{ C }^{ 3 } \right|$, is ( where $\left| A \right|$ represent det. $A$)
$\begin{bmatrix}
\cos\theta & -\sin\theta \[0.3em]
\sin\theta & \cos\theta
\end{bmatrix} = \begin{bmatrix}
1 & -\tan\theta/2 \[0.3em]
\tan\theta/2 & 1
\end{bmatrix} \begin{bmatrix}
1 & \tan\theta/2 \[0.3em]
-\tan\theta/2 & 1
\end{bmatrix}$
If $A = \begin{bmatrix} a & b\ c & d \end{bmatrix} $ satisfies the equation $x^2 - (a+d)x+k=0$ then