Tag: maths

Questions Related to maths

The integral part of $4.20$ is

  1. $4$

  2. $2$

  3. $3$

  4. None of these


Correct Option: A
Explanation:

The integral part of $4.20$ is $4$.

So, option A is correct.

The decimal part of $4.20$ is

  1. $4$

  2. $0.20$

  3. $2$

  4. None of these


Correct Option: B
Explanation:

The decimal part of $4.20$ is $0.20$.

The decimal part of $3.89$ is

  1. $3$

  2. $0.79$

  3. $0.89$

  4. None of these


Correct Option: C
Explanation:

A decimal may have both a whole-number part and a fractional part. 

The whole-number part of a decimal are those digits to the left of the decimal point. 

The fractional part(decimal part) of a decimal is represented by the digits to the right of the decimal point.

Decimal part of $3.89$ is $0.89$.

The integral part of $9.99$ is

  1. $9$

  2. $8$

  3. $7$

  4. None of these


Correct Option: A
Explanation:

Fractional part of $9.99$ is $9$.

So, option A is correct.

The integral part of $63.281$ is?

  1. $63$

  2. $0.281$

  3. $26$

  4. $5$


Correct Option: A
Explanation:

The integer part, or integral part of a decimal number is the part to the left of the decimal separator. The part from the decimal separator to the right is the fractional part.

$\therefore$ Integral part of $63.281$ is $63$

Fractional Part of $2.056$ is?

  1. $0.056$

  2. $0.05$

  3. $0.5$

  4. $0.66$


Correct Option: A
Explanation:

The integer part, or integral part of a decimal number is the part to the left of the decimal separator. The part from the decimal separator to the right is the fractional part.

$\therefore$ Fractional part of $2.056$ is $0.056$

The fractional part of $28.13$ is?

  1. $0.13$

  2. $28.1$

  3. $2.81$

  4. $13.28$


Correct Option: A
Explanation:

The integer part, or integral part of a decimal number is the part to the left of the decimal separator. The part from the decimal separator to the right is the fractional part.

$\therefore$ Fractional part of $28.13$ is $0.13$

The integral part of $78.027$ is?

  1. $24$

  2. $0.27$

  3. $78$

  4. $38$


Correct Option: C
Explanation:

The integer part, or integral part of a decimal number is the part to the left of the decimal separator. The part from the decimal separator to the right is the fractional part.

$\therefore$ Integral part of $78.027$ is $78$

The number obtained by interchanging integral part and fractional part of $45.01$ is?

  1. $1.45$

  2. $10.45$

  3. $11.45$

  4. $1.045$


Correct Option: A
Explanation:

Integral part of a decimal number is the part to the left of the decimal separator. The part from the decimal separator to the right is the fractional part.


$\Rightarrow$ Integral part $=45$ Fractional part $=0.01$

$\therefore$ New number obtained by interchanging $= 1.45$

Integral part of $034.098$ is :

  1. $34$

  2. $09$

  3. $098$

  4. $0.098$


Correct Option: A
Explanation:

Let $x=34.098$

$\left[ x \right] =x-\left{ x \right} \ \left[ 34.098 \right] =34.098-.098\ \Rightarrow \left[ 34.098 \right] =34$
where $\left[ . \right] $ is integral part and ${.}$ is fractional part function
So, option A is correct.