Tag: maths

Questions Related to maths

Let $ A(1,2,3), B(0,0,1), C(-1,1,1)$ are the vertices of a $\triangle ABC$. Then, the equation of internal angle bisector through A to side BC is 
  1. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+2\widehat{j}+3\widehat{k})$

  2. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+4\widehat{j}+3\widehat{k})$

  3. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+3\widehat{j}+2\widehat{k})$

  4. $\underset{r}{\rightarrow}=\widehat{i}+2\widehat{j}+3\widehat{k}+\mu (3\widehat{i}+3\widehat{j}+4\widehat{k})$


Correct Option: B

In a  $\triangle A B C,$  side  $A B$  has the equation  $2 x + 3 y = 29$  and the side  $A C$  has the equation  $x + 2 y = 16.$  If the mid point of  $B C$  is  $( 5,6 ) ,$  then the equation of  $B C$  is

  1. $2 x + y = 16$

  2. $x + y = 11$

  3. $2 x - y = 4$

  4. $x + y = - 11$


Correct Option: B
Explanation:

$\cfrac { x _{ 1 }+x _{ 2 } }{ 2 } =5\Rightarrow x _{ 1 }+x _{ 2 }=10.....(1)\quad and\quad y _{ 1 }+y _{ 2 }=12.....(2)$

$Point(x _1,y _1)$ lie on line AC
then
$x _1+2y _1=16...(3)$
Similarly $2x _2+3y _2=29....(4)$
$\Rightarrow 2(x _1+x _2)+4y _1+3y _2=32+29\2\times 10+4y _1+36-3y _1=61\y _1=5\Rightarrow x _1=6\Rightarrow x _2=4\ \Rightarrow y _2=7$
now,
we take these two points and make equation,
$AC= x+y=11$

In triangle, three angles are  $x , x + 10 ^ { \circ } + x + 20 ^ { \circ }$  then the biggest is

  1. $70 ^ { \circ }$

  2. $80 ^ { \circ }$

  3. $90 ^ { \circ }$

  4. none


Correct Option: A

In. triangle ABC,$\angle A$ + $\angle B$ = 144 and$\angle A$ + $\angle C$ = 124.
Calculate smallest angle of the triangle.

  1. $36^o$

  2. $56^o$

  3. $46^o$

  4. none of these


Correct Option: A
Explanation:

$\angle A + \angle B = 144$...(I)
$\angle A + \angle C = 124$...(II)
In triangle ABC,
$\angle A  + \angle B + \angle C = 180 $
Add, I and II,
$\angle A + \angle B + \angle A + \angle C = 144+ 124$
$180 + \angle A = 268 $
$\angle A = 268 - 180 $
$\angle A = 88$
Put this value in (I)
$\angle A + \angle B = 144$
$88 + \angle B = 144$
$\angle B = 56$
Put this value in (II)
$\angle A + \angle C = 124$
$88 + \angle C = 124$
$\angle C = 36$

If every side of a triangle is doubled, then the area of the new triangle is 'K' times the area of the old one. The value of K is

  1. 2

  2. 3

  3. $\sqrt 2$

  4. 4


Correct Option: D
Explanation:
Let the area of the triangle be $x$.

We know that the area of the triangle
$=\dfrac{1}{2}\times Height \times Base$
$x=\dfrac{1}{2}\times Height \times Base$              $........ (1)$

According to the question,
$Kx=\dfrac{1}{2}\times 2 \times Height \times 2 \times Base$
$Kx=4\times x$
$K=4$

Hence, this is the answer.

The ratio of the areas of two similar triangles is equal to the

  1. ratio ofcorresponding medians

  2. ratio ofcorresponding sides

  3. ratio of the squares ofcorresponding sides

  4. none of these


Correct Option: C
Explanation:

The ratio of the areas of two similar triangles is equal to the square of ratio of their corresponding sides.

Number of ordered pairs $(x, y)$ of real numbers satisfying the equation $x^{2} + y^{2} - 24x - 26y + 313 = 0$ is equal to

  1. Infinite

  2. Finite but more than one

  3. Exactly one

  4. Zero


Correct Option: D

The number having no reciprocal is

  1. $2$

  2. $1$

  3. $-1$

  4. $0$


Correct Option: D
Explanation:

If a number is 2 then its reciprocal is $\dfrac{1}{2}$

The number '0' has no reciprocal.

The decimal part of $9.99$ is

  1. $0.99$

  2. $9$

  3. $8$

  4. $0.98$


Correct Option: A
Explanation:

Decimal part of $9.99$ is $0.99$.

So, option A is correct.

The integral part of $3.89$ is

  1. $3$

  2. $0.89$

  3. $4$

  4. None of these


Correct Option: A
Explanation:

Integral part of $3.89$ is $3$.