Tag: chemistry

Questions Related to chemistry

The bond dissociation energy of $C-H$ in ${CH} _{4}$ from the equation
$C(g)+4H(g)\rightarrow {CH} _{4}(g);\Delta H=-397.8kcal$ is:

  1. $+99.45kcal$

  2. $-99.45kcal$

  3. $+397.8kcal$

  4. $+198.9kcal$


Correct Option: A
Explanation:

$\Delta H $ of the given reaction,
$C(g) + 4H(g) \rightarrow CH _4(g)$ 
can be written as, $\Delta H = \text {heat released in formation of 4 C-H bonds in CH} _4$
=> $\Delta H = -4\times \text{bond dissociation energy of C-H bond in CH} _4$
=> $-397.8 = -4\times \text{bond dissociation energy of C-H bond in CH} _4$
=> $\text{bond dissociation energy of C-H bond in CH} _4 = 99.45Kcal$
Hence, answer is option A.

Given that $\Delta {H} _{f}(H)=218kJ/mol$, express the $H-H$ bond energy in $kcal/mol$:

  1. $52.15$

  2. $911$

  3. $109$

  4. $52153$


Correct Option: C
Explanation:

$H-H\longrightarrow H+H\quad \quad ;\quad \Delta H$

$\Delta H$ is the bond energy
Therefore, $2\Delta H={ \Delta  } _{ f }H$
            $\therefore \quad \Delta H=\dfrac { { \Delta  } _{ f }\left( H \right)  }{ 2 } $
                             $=\dfrac { 218 }{ 2 } KJ/mol$
                    $\Delta H=109KJ/mol$

The $S-S$ bond energy is: 

$\Delta { H } _{ f }^{ o }({E}{t}-S-{E}{t})=-147kJ/mol$
$\Delta { H } _{ f }^{ o }({E}{t}-S-S-{E}{t})=-202kJ/mol$
$\Delta { H } _{ f }^{ o } S(g)=+223kJ/mol$

  1. $168\ kJ$

  2. $126\ kJ$

  3. $278\ kJ$

  4. $575\ kJ$


Correct Option: C
Explanation:

${C} _{2}{H} _{5}-S-{C} _{2}{H} _{5}+S(s)\rightarrow {C} _{2}{H} _{5}-S-S-{C} _{2}{H} _{5}$
$\Delta { H } _{ reaction }=\sum { { \Delta H } _{ f(products) }^{ o } } +\sum { \Delta { H } _{ f(reactants) }^{ o } } $
$=(-202)-(-147)=-55kJ$
$\Delta { H } _{ reaction }=\sum { { BE } _{ reactants } } -\sum { { BE } _{ products } } $
$-55=$ Heat of sublimation or enthalpy of atomisation of sulphur$-BE(S-S)$
$-55=223-BE(S-S)$
$BE(S-S)=223+55=278kJ$

Using the data provided, calculate the multiple bond energy ($kJ{ mol }^{ -1 }$) of $C\equiv  C$ bond in ${C} _{2}{H} _{2}$. That energy is (take the bond energy of a $C-H$ bond as $350kJ{ mol }^{ -1 }$):
$2C(s)+{ H } _{ 2 }(g)\longrightarrow { C } _{ 2 }{ H } _{ 2 }(g);\Delta { H }^{  }=225kJ{ mol }^{ -1 }$
$2C(s)\longrightarrow  2C(g);\Delta { H }^{  }=1410kJ{ mol }^{ -1 }\quad $
${H} _{2}(g)\longrightarrow 2H(g);\Delta { H }^{  }=330kJ{ mol }^{ -1 }\quad $

  1. $1165$

  2. $837$

  3. $865$

  4. $815$


Correct Option: D
Explanation:

$ \Delta H _R = (bond energy) _R - (bond energy) _P$

$225 =( [1410+330]-[\Delta H _{c\equiv c} + 2*350])$
$\therefore \Delta H _{c\equiv c} = 815KJ/mol$

Given that, bond energies of $H-H$ and $Cl-Cl$ ar $430kJ/mol$ and $240kJ/mol$ respectively. $\Delta {H} _{f}$ for $HCl$ is $-90kJ/mol$. Bond enthalpy of $HCl$ is:

  1. $380kJ{ mol }^{ -1 }$

  2. $425kJ{ mol }^{ -1 }$

  3. $245kJ{ mol }^{ -1 }$

  4. $290kJ{ mol }^{ -1 }$


Correct Option: B
Explanation:

$H-H+Cl-Cl\rightarrow 2H-Cl$

${ \Delta H } _{ f }\left( HCl \right) =$ Bond energy of H-H + Bond energy of $Cl-Cl$ - 2(Bond energy of $H-Cl$)
$\therefore $  -90=430+240-(Bond enthalpy of HCl) $\times $ 2
$\therefore $  Bond enthalpy of HCl $=\dfrac { 430+240+90 }{ 2 } =380KJ/mol$

If values of $\Delta { H } _{ f }^{ o }$ of $ICl(g),\, Cl(g),\, I(g)$ are respectively $17.57,\,121.34,\,106.96$ J mol $^{-1}$. The value of $I-Cl$ (bond energy) in J mol $^{-1}$ is:

  1. $17.57$

  2. $210.73$

  3. $35.15$

  4. $106.96$


Correct Option: B
Explanation:
Gas                Values of ${ \Delta H } _{ f }$
$ICl$                     $17.57$
$Cl$                      $121.34$
$I$                         $106.96$
  $I+Cl\rightarrow ICl$
$(g)$  $(g)$      $(g)$
according to Hess less,
$\Delta H={ \Delta H } _{ f }$(reactants) $-\Delta { H } _{ f }$(products)
         $=(106.96+121.34)-(17.57)$
         $=210.73$ J/mol
$\Rightarrow$ Value of $I-Cl$ (bond energy) in J/mol $=210.73$ J/mol

The bond dissociation energies for single covalent bonds formed between carbon and $A,B,C,D$ and $E$ atoms are:

Bond  Bond energy $kcal{ mol }^{ -1 }$
(i) $C-A$ $240$
(ii) $C-B$ $382$
(iii) $C-D$ $276$
(iv) $C-E$ $486$

This indicates that the smallest atom is:

  1. $A$

  2. $B$

  3. $C$

  4. $E$


Correct Option: D
Explanation:

$C-E$ bond has highest bond energy; it means that the covalent bond $C-E$ will be strongest. Smaller is the size of atom, stronger is the covalent bond.

Given the bond dissociation energies below (in kcal/mole), estimate the $\Delta { H }^{ o }$ for the propagation step

${ \left( { CH } _{ 3 } \right) } _{ 2 }CH+{ Cl } _{ 2 }\longrightarrow { \left( { CH } _{ 3 } \right) } _{ 2 }CHCl+Cl$


${ CH } _{ 3 }{ CH } _{ 2 }{ CH } _{ 2 }-H$ $98$
${ \left( { CH } _{ 3 } \right)  } _{ 2 }CH-H$ $95$
$Cl-Cl$ $58$
$H-Cl$ $103$
${ CH } _{ 3 }{ CH } _{ 2 }{ CH } _{ 2 }-Cl$ $81$
${ \left( { CH } _{ 3 } \right)  } _{ 2 }CH-Cl$ $80$
  1. $-30kcal/mol$

  2. $+22kcal/mol$

  3. $-40kcal/mole$

  4. $+45kcal/mol$


Correct Option: A

Given the bond dissociation energies below (in $kcal$ /mole), estimate the $\triangle H^{\circ}$ for the propagation step
$(CH _{3}) _{2} CH + Cl _{2}\rightarrow (CH _{3}) _{2} CHCl + Cl$
$CH _{3} CH _{2}CH _{2} - H \ 98$
$(CH _{3}) _{2} CH - H \ 95$
$Cl - Cl\ 58$
$H-Cl\ 103$
$CH _{3}CH _{2}CH _{2} - Cl\ 81$
$(CH _{3}) _{2} CH - Cl \ 80$

  1. $-30\ kcal/mole$

  2. $+22\ kcal/mole$

  3. $-40\ kcal/mole$

  4. $+45\ kcal/mole$

  5. $-45\ kcal/mole$


Correct Option: A

If the bond energies of $H-H,\ Br-Br$ and $H-Br$ are 433, 192 and 364 $kJ \, mol^{-1}$ respectively, $\Delta H$ for the reaction $H _{2(g)}+BR _{2(g)}\rightarrow 2HBr _{(g)}$ is:

  1. -261 kJ

  2. +103 kJ

  3. +261 kJ

  4. -103 kJ


Correct Option: D