Tag: chemistry

Questions Related to chemistry

Law of multiple proportions is illustrated by which one of the  following pairs ?

  1. $H _{2}S$ and $SO _{2}$

  2. $NH _{3}$ and $NO _{2}$

  3. $N _{2}O$ and NO

  4. $N _{2}S$ and $Na _{2}O$


Correct Option: C
Explanation:
Law of multiple proportions say that if 2 elements form more than one compounds between them, then the ratios of the masses of the second element which combine with a fixed mass of the first element will be ratios of small whole numbers.
In $N _{2}O$ and $NO$, the ratio of weight of $N$ reacting with a constant weight of $O$ is $2:1$

State True or False.
If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in whole number ratio.

  1. True

  2. False


Correct Option: A
Explanation:

When two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in whole number ratio. This is the law of multiple proportions.
Consider two elements $C$ and $O$. They combine to form $CO$ and $CO _2$.
The masses of oxygen that combine with $12$ g of carbon to form $CO$ and $CO _2$ are $16$ g and $32$ g respectively. They are in whole number ratio $1:2$.

$P _xO _y$ what will be correct value of $x$ and $y$ if $P$ and $H$ combine in the mass ratio of $3.1 : 0.3$ and in water $H$ and $O$ combine in the mass ratio $0.2 : 1.6$?

  1. $1$ and $1$

  2. $1$ and $2$

  3. $2$ and $3$

  4. $2$ and $5$


Correct Option: C
Explanation:

 

$P:H = 3.1 : 0.3 = (3.1 \times : 0.30) \times 2 = 6.2 : 0.6$

$H:O = 0.2 : 1.6 = (0.2 \times 3 : 1.6) \times 3 = 0.6 : 4.8$

$P:O = 6.2 : 4.8 = 3.1 : 2.4 $ (ratio by mass) $= 1.29: 1$

$1.29$ mass $P= 1 $ mass $O$

$x$ mass $P= 16 \ g$ mass $O$

$x= 16 \times 1.29 = 20.64 \ g$ Phosphorous

$= \cfrac {20.64}{31}$ moles Phosphorous

$= 0.66$

$1 \ mole \ O(y) = 0.66 \ mole \ P(x) = \cfrac 23$

$\therefore \ x:y = 2:3 $

$x =2 \ ; \ y=3$

The enthalpies of combustion of carbon and carbon monoxide are -393.5 KJ and -283 KJ respectively the enthalpy of formation of carbon monoxide is :

  1. -676.5 KJ

  2. -110.5 KJ

  3. 110.5 KJ

  4. 676.5 KJ


Correct Option: C

The incorrect statement is :

  1. $ \Delta _{ So| }H^{ 0 }={ \Delta } _{ Lattice }H^{ 0+ }\Delta _{ Hyd }H^{ 0 } $

  2. The enthalpy on dilution is independent on original concentration.

  3. $ N \equiv N > C \equiv N > C \equiv C $ [value of mean bond enthalpy in KJ/mol]

  4. $ H _2O(S) \overset { 1\quad bar }{ \rightleftharpoons } H _2O(I) 273 K $


    $ \Delta U= +Ve; \Delta H = +ve; W= +ve; q = +ve $


Correct Option: B

The enthalpy of tetramerization of $X$ in gas phase $(4X(g)\rightarrow { X } _{ 4 }(g))$ is $-100\ kJ/mol$ at $300\ K$. The enthalpy of vaporisation for liquid $X$ and ${X} _{4}$ are respectively $30\ kJ/mol$ and $72\ kJ/mol$ respectively.
$\Delta S$ for tetramerization of $X$ in liquid phase is $-125\ J/K mol$ at $300\ K$.
What is the $\Delta G$ at $300\ K$ for tetramerization of $X$ in liquid phase?

  1. $-52\ kJ/mol$

  2. $-98\ kJ/mol$

  3. $-14.5\ kJ/mol$

  4. $None\ of\ these$


Correct Option: A

Heat of formation of $2$ moles of ${NH} _{3}(g)$ is $-90kJ$; bond energies of $H-H$ and$N-N$ bonds are $435kJ$ and $390kJ$ ${mol}^{-1}$ respectively. The value of the bond energy of $N\equiv N$ will be:

  1. $-472.5\ kJ$

  2. $-945\ kJ$

  3. $472.5\ kJ$

  4. $945\ kJ$ ${mol}^{-1}$


Correct Option: D
Explanation:

$\Delta { H } _{ reaction }=\sum { { \left( BE \right)  } _{ reactants } } -\sum { { \left( BE \right)  } _{ products } } $
$-90=x+3\times 435-6\times 390$
$x=945kJ$ ${mol}^{-1}$

The standard enthalpy of formation of ${NH} _{3}$ is $-46kJ{ mol }^{ -1 }$. If the enthalpy of formation of ${H} _{2}$ from its atoms is $-436kJ{ mol }^{ -1 }$ and that of ${N} _{2}$ is $-712kJ{ mol }^{ -1 }$, the average bond enthalpy of $N-H$ bond in ${NH} _{3}$ is:

  1. $+1056kJ{ mol }^{ -1 }\quad $

  2. $-1102kJ{ mol }^{ -1 }\quad $

  3. $-964kJ{ mol }^{ -1 }\quad $

  4. $+352kJ{ mol }^{ -1 }\quad $


Correct Option: D
Explanation:

${ H } _{ reaction }=\sum { { BE } _{ reactants } } -\sum { { BE } _{ products } } $
$-46=(\cfrac(712)+\cfrac{3}{2}(436))-3x$
$x=+352\ kJ{ mol }^{ -1 } $

Calculate $ \Delta { H }^{ o }$ of the reaction:

$ { CH } _{ 2 }={ CH } _{ 2 }+3O=O\longrightarrow 2O=C=O+2H-O-H$

The average bond enthelpies of various bond are:

$Bond \quad \quad \quad\quad \quad C-H\quad \quad O=O\quad \quad C=O\quad \quad O-H\quad \quad C=C$
$Bond\ enthalpy$:     414               499               724           460               619
[kJ/mol]

  1. -364kJ

  2. -564kJ

  3. -964kJ

  4. -1654kJ


Correct Option: C

$H _{2}+Cl _{2}\rightarrow 2HCl+44\ K.Cal$. Heat of decomposition of $HCl$ is:

  1. $-44\ K.Cal$

  2. $+44\ K.Cal$

  3. $-22\ K.Cal$

  4. $+22\ K.Cal$


Correct Option: D
Explanation:

$H _2+Cl _2 \longrightarrow 2HCl+44Kcal$

Heat of decomposition of $HCl$ :-
$2HCl \longrightarrow \Delta H _{decomp}=+44 Kcal$
$1 HCl \longrightarrow \Delta H _{decomp}=+22 Kcal$
So, Heat of decomposition of $HCl=+22Kcal$