Tag: physics
Questions Related to physics
An open tube is in resonance with string (frequency of vibration of tube in $n _{0}$. If tube is dipped on water is that 75% of length of tube is inside water, then the ratio of the frequency of tube to string now will be
The equation of a standing wave in a string fixed at both ends is given as $ y = A \quad sin \quad kx \quad cos \quad \omega t $
The amplitude and frequency of a particle vibrating at the mid of an antiode and a node are respectively
A wire of length l , area of cross section A and young's modules of elasticity y is suspended from the roof of a building. A block of mass m is attached at lower end of the wire. if the block is displaced from its mean position and then released the block starts oscillating. Time period of these oscillation will be
Which of the following equations represents a transverse wave travelling along -y axis?
The displacement from the position of equilibrium of a point $4\ cm$ from a source of sinusoidal oscillations is half the amplitude at the moment $t=\dfrac{T}{6} (T$ is the time period$)$. Assume that the source was at mean position at $t=0$. The wavelength of the running wave is
A string of length 1 m fixed at one end and on the other end a block of mass M=4 kg is suspended.The string is set into vibrations and represented by equation, Y=$6\sin \left( {\dfrac{{\pi x}}{{10}}} \right)\;\cos \;100\;\pi t,$ where x and y are in cm an in seconds.
Find the number of loops formed in the string.
A travelling wave is given by $y=\frac { 0.8 }{ 3{ x }^{ 2 }+12xt+12{ t }^{ 2 }+1 } $ where x and y are is m and t is in sec, then velocity and amplitude wave will be
A travelling wave on a light on a tight string is described by the equation $y=A\sin (kx-\omega t)$. if tension in the string is $F$ then total energy stored in the string having from $x=0$ to $x=2\pi/k$ is
The $(x, y)$ co-ordinates of the corners of a square plate are $(0, 0) (L, 0) (L, L)$ & $(0, L)$. The edges of the plate are clamped & transverse standing waves are set up in it. If $u (x, y)$ denotes the displacement of the plate at the point $(x, y)$ at some instant of time, the possible expression(s) for $u$ is/are : ($a$ = positive constant)
The displacement of the particle at $x=0$ of a stretched string carrying wave in the positive x-direction is given $f(t)=A sin \frac {t} {T})$. The wave speed is V. Write the wave equation