Tag: physics

Questions Related to physics

As the mass number increase, binding energy per nucleon,

  1. increases

  2. decreases

  3. remain same

  4. may increase or may decrease


Correct Option: D

Per nucleon energy of $ _ { 3 } L ^ { 7 }$ and $2 ^ { \mathrm { H } e ^ { 4 } }$  nucleus is 5. 60  MeV and 7.06 MeV then in$ _ { 3 } \mathrm { L } ^ { 7 } + _ { 1 } \mathrm { P } ^ { 1 } \rightarrow 2 _ { 2 } \mathrm { He } ^ { 4 }$ energy released is:

  1. $29.6 \mathrm { MeV }$

  2. $2.4MeV$

  3. $8.4 \mathrm { MeV }$

  4. $17.3 \mathrm { MeV }$


Correct Option: A

Mass defect of an atom refers to 

  1. inaccurate measurement of mass of neutrons

  2. mass annihilated to produce energy to bind the nucleons

  3. packing fraction

  4. difference in the number of neutrons and protons in the nucleus


Correct Option: B
Explanation:

$ Mc^{2} + (B.E) = (N _{mN} + Z _{mP})c^{2}$
where,
         $M _{c} =  $  total mass of nucleus.
         $N _{mN} =  $  total mass of neutrons
         $N _{mP}  =  $  total mass of protons

In a fission process, nucleus A divides into two nuclei B and C, their binding energies being $\mathbf { E } _ { \mathbf { a } ^ { * } }$   $E _ { b }$  and $E _ { c }$ respectively. Ihen

  1. $\mathbf { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { c } } = \mathrm { E } _ { \mathrm { a } }$

  2. $\mathrm { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { c } } > \mathrm { E } _ { \mathrm { a } }$

  3. $\mathrm { E } _ { \mathrm { b } } + \mathrm { E } _ { \mathrm { e } } < \mathrm { E } _ { \mathrm { a } }$

  4. $\mathrm { E } _ { \mathrm { b } } \mathrm { E } _ { \mathrm { c } } = \mathrm { E } _ { \mathrm { a } }$


Correct Option: A
Explanation:

$\begin{array}{l} { E _{ b } }+{ E _{ c } }>{ E _{ a } } \ \, \because some\, \, energy\, \, is\, \, goen\, \, in\, \, breaking\, \, nuclie\, \, of\, \, A \ Hence, \ option\, \, A\, \, is\, \, correct\, \, answer. \end{array}$

For uranium nucleus. Find relation between mass and volume 

  1. $m\propto v$

  2. $m\propto \sqrt{v}$

  3. $m\propto v^2$

  4. $m\propto \dfrac{1}{v}$


Correct Option: A

The phenomenon of pair production is :

  1. The production of an electron and a positron from $\gamma$ radiation

  2. Ejection of an electron from a metal surface when exposed to ultraviolet light

  3. Ejection of an electron from a nucleus

  4. Ionization of a neutral atom


Correct Option: A
Explanation:

Pair production :
Gamma rays of sufficient energy when passing near a nucleus disappear and materialize into pair of an electron and a positron.
To have pair production, minimum energy of $\gamma$ - ray radiation is 1.02MeV.

In pair annihilation the least number of  $\gamma $- ray photons produced is :

  1. 2

  2. 3

  3. 4

  4. 1


Correct Option: A
Explanation:

In a pair annihilation, atleast two gamma rays must be produced. For example, when an electron encounters a positron, they annihilate to produce two gamma rays each having $0.511$ MeV energy.

The rest energy of electron or positron is

  1. 0.51 MeV

  2. 1 MeV

  3. 1.02 MeV

  4. 1.5 MeV


Correct Option: A
Explanation:

Mass of electron $ = 9.1 \times 10^{-31}  kg$

Rest mass energy $ = mc^{2}$


                               $ =\left (\dfrac{9.1\times 10^{-31}}{1.6\times10^{-27}} \times931.978\right )c^{2}$

                               $ = 0.52\  MeV$

Positronium is converted into

  1. 2 Photons each of energy 0.51MeV

  2. 1 Photon of energy 1.02 MeV

  3. 2 Photons each of energy 1.02MeV

  4. 1 Photon of energy 0.51MeV


Correct Option: A
Explanation:

Rest mass energy of a positron (as well as electron) is $0.51$ MeV.

Total rest mass energy of positron and electron is $2(0.51) = 1.02$ MeV
Thus a positron and an electron annihilate to produce two photons each of energy $0.51$ MeV. This phenomenon is known as positron-electron annihilation process.

In pair annihilation, two  $\gamma $ -ray photons are produced due to

  1. Law of conservation of energy

  2. Law of conservation of mass

  3. Law of conservation of momentum

  4. Law of conservation of angular momentum


Correct Option: B
Explanation:

When a particle encounters its antiparticle, they annihilate with the transformation of their mass energies into two gamma rays obeying law of conservation of mass.