Tag: physics

Questions Related to physics

What should be the velocity of an electron so that its momentum becomes equal to that of a photon of wavelength $5200\overset {\circ}{A}$?

  1. $700\ m/s$

  2. $1000\ m/s$

  3. $1400\ m/s$

  4. $2800\ m/s$


Correct Option: C
Explanation:

Momentum, $p = mv = \dfrac {h}{\lambda}$


or $v = \dfrac {h}{m\lambda}$

$\therefore v = \dfrac {6.62\times 10^{-34}}{9.1\times 10^{-31}\times 5.2\times 10^{-7}}$

$\Rightarrow v = \dfrac {6.2\times 10^{4}}{9.1\times 5.1}$

$\Rightarrow v = 1400\ m/s$.

Ultraviolet radiation of 6.2 eV falls on an aluminium surface (work function 4.2 eV). The kinetic energy (in joule) of the fastest electron emitted is :

  1. $3.2 \times 10^{-21}$

  2. $1.6 \times 10^{-17}$

  3. $3.2 \times 10^{-19}$

  4. $3.2 \times 10^{-15}$


Correct Option: C
Explanation:

$Energy\quad of\quad radiation,\quad h\nu =6.2eV\ =6.2\times 1.6\times { 10 }^{ -19 }J\ Work\quad function\quad W=4.2eV\ =4.2\times 1.6\times { 10 }^{ -19 }J\ KE=h\nu -W\ =6.2\times 1.6\times { 10 }^{ -19 }-4.2\times 1.6\times { 10 }^{ -19 }\ =2\times 1.6\times { 10 }^{ -19 }\ =3.2{ \times 10 }^{ -19 }J$

Momentum of a photon having frequency $1.5\times 10^{13}Hz$?

  1. $3.13\times 10^{-29}kg m/s$

  2. $3.3\times 10^{-34}kg m/s$

  3. $6.6\times 10^{-34}kg m/s$

  4. $6.6\times 10^{-30}kg m/s$


Correct Option: A
Explanation:

$\quad Momentum\quad of\quad a\quad photon\quad is\quad P=\quad h/\lambda \ \quad And\quad \quad \quad \lambda \nu =c\quad ,\quad where\quad c=\quad speed\quad of\quad light\quad h=\quad Planck's\quad constant\ \qquad \qquad \qquad \qquad \qquad \qquad \lambda =\quad wavelength\quad of\quad photon\ \qquad \qquad \qquad \qquad \qquad \qquad \nu =\quad frequency\quad of\quad photon\ so\quad \lambda =\quad \dfrac { 3\times { 10 }^{ 8 } }{ 1.5\times { 10 }^{ 13 } } =2\times { 10 }^{ -5 }{ m }^{ }\quad P=\dfrac { 6.26\times { 10 }^{ -34 } }{ 2\times { 10 }^{ -5 } } =3.13\times { 10 }^{ -29 }kg m/s\ Therefore\quad option\quad A.\quad$

A beam of light has two wavelengths $4971\mathring{A}$ and $6216\mathring{A}$ with a total intensity of $3.6\times { 10 }^{ -3 }W{ m }^{ -2 }$ equally distributed among the two wavelengths. The beam falls normally on an area of $1{cm}^{2}$ of a clean metallic surface of work function $2.3eV$. Assume that there is no loss of light by reflection and that each capable photon ejects one electron. The number of photo electrons liberated in $2s$ approximately :

  1. $6\times { 10 }^{ 11 }$

  2. $9\times { 10 }^{ 11 }$

  3. $11\times { 10 }^{ 11 }$

  4. $15\times { 10 }^{ 11 }$


Correct Option: B
Explanation:
${ E } _{ 1 }=\cfrac { 1242 }{ 497.2 } =2.50eV;{ E } _{ 2 }=\cfrac { 1242 }{ 6621. } =2.0eV$
so, photoelectron emission takes place only due to first wavelength
$\therefore$ No. of photoelectrons emitted $=\cfrac { 1.8\times { 10 }^{ -3 }\times { 10 }^{ -4 }\times 2 }{ 2.5\times 1.6\times 10^{-19} } hv=9\times { 10 }^{ 11 }$

The threshold frequency for a metallic surface corresponds to an energy of $6.2eV$, and the stopping potential for a radiation incident on this surface $5V$. The incident radiation lies in.

  1. X-ray

  2. ultra-violet region

  3. infra-red region

  4. visible region


Correct Option: B
Explanation:

$hv=5eV+6.2eV=11.2eV$
$\lambda =\cfrac { 1242 }{ 11.2 } nm=1109\mathring { A } $
it lies in ultraviolet region

When photon of the energy 3.8 eV falls on metallic surface of work function 2.8 eV, then the kinetic energy of emitted electrons are

  1. 1 eV

  2. 6.6 eV

  3. 0 to 1 eV

  4. 2.8 eV


Correct Option: A
Explanation:

Photoelectric law

$KE=h\nu -W\ h\nu =3.8eV\ W=2.8eV\ KE=3.8-2.8\ =1eV$

An electron of mass $m$ and charge $e$ is accelerated from rest through a potential difference of $V$ volt in vacuum. Its final speed will be

  1. $\cfrac { eV }{ 2m } $

  2. $\cfrac { eV }{ m } $

  3. $\sqrt { \cfrac { 2eV }{ m } } $

  4. $\sqrt { \cfrac { eV }{ 2m } } $


Correct Option: C
Explanation:
  • Energy gained by electron when accelerated through a potential $V $ is $ charge\times voltage$ i.e., $eV$ 
  • As Kinetic energy 
  •  of any mass $m$ is given as $\dfrac{mv^2}{2}$ 
  • so velocity $v$= $\sqrt[2]{ \dfrac{2K.E.}{m}}$ 
  • for final speed put $K.E.= eV$ we get final speed $v$= $ \sqrt[2]{ \dfrac {2eV}{m}}$. Option C is correct

A hydrogen-like atom is in a higher energy level of quantum number $6$. The excited atom make a transition to first excited state by emitting photons of total energy $27.2\ eV$. The atom from the same excited state make a transition to the second excited state by successively emitting two photons. If the energy of one photon is $4.25\ eV$, find the energy of other photon.

  1. $5.25\ eV$

  2. $6.25\ eV$

  3. $6.95\ eV$

  4. $7.80\ eV$


Correct Option: A
Explanation:
Total energy liberated during transition of ${ e }^{ - }$ from ${ n }^{ th }$ shell to first excited state
i.e, ${ 2 }^{ nd }$ shell $=10.20+17.0=2720eV$
                     $=27.20\times 1.602\times { 10 }^{ -12 }erg$
$\dfrac { hc }{ \lambda  } ={ R } _{ H }\times { Z }^{ 2 }{ h } _{ c }\left[ \dfrac { 1 }{ { z }^{ 2 } } -\dfrac { 1 }{ { n }^{ 2 } }  \right] $
$27.20\times 1.602\times { 10 }^{ -12 }={ R } _{ H }\times { Z }^{ 2 }{ h } _{ c }\left[ \dfrac { 1 }{ { z }^{ 2 } } -\dfrac { 1 }{ { n }^{ 2 } }  \right] \quad \longrightarrow \left( 1 \right) $
i.e. ${ 3 }^{ rd }$ shell $=4.25+5.95=10.20eV$
                     $=10.20\times 1.602\times { 10 }^{ -12 }erg$
$\therefore$   $10.20\times 1.602\times { 10 }^{ -12 }={ R } _{ H }\times { Z }^{ 2 }{ h } _{ c }\left[ \dfrac { 1 }{ { 3 }^{ 2 } } -\dfrac { 1 }{ { n }^{ 2 } }  \right] $ $\longrightarrow \left( 2 \right) $
We get $n=5.25eV$

Calculate the number of photons emitted per seconds from a monochromatic light source of $40\ W$, giving out light of wavelength $5000\ \mathring {A}$.

  1. $1.0\ \times  10^{30}$

  2. $1.0\ \times  10^{20}$

  3. $1.0\ \times  10^{10}$

  4. $1.0\ \times  10^{25}$


Correct Option: B

In a photoelectric cell, illuminated with a certain radiation, the minimum negative anode of potential with respect to emitting metal required to stop the electron is $2 V.$ the  minimum KE of the photoelectrons is 

  1. $0 eV$

  2. $1 eV$

  3. $2 eV$

  4. $ 4 eV$


Correct Option: C
Explanation:

Given,

$V _0=2V$
The minimum kinetic energy of the photo electron is
$K _{min}=eV _0$
$K _{min}=2eV$
The correct option is C.