Tag: lowest form of fractions

Questions Related to lowest form of fractions

The fraction form of 0.23 is

  1. $\displaystyle\frac{2.3}{10}$

  2. $\displaystyle\frac{23}{100}$

  3. $\displaystyle\frac{23}{90}$

  4. $\displaystyle\frac{7}{90}$


Correct Option: B
Explanation:

The fraction for of 0.23$ =\frac{23}{100}$
Hence $B$  is the answer

The rational form of $-25.6875$ is

  1. $\displaystyle-\frac{411}{16}$

  2. $\displaystyle-\frac{421}{16}$

  3. $\displaystyle-\frac{431}{16}$

  4. $\displaystyle-\frac{441}{16}$


Correct Option: A
Explanation:

Consider the given decimal number

$ \Rightarrow -25.6875 $

$ \Rightarrow -\dfrac{256875}{10000} $

$ \Rightarrow -\dfrac{51375}{2000} $

$ \Rightarrow -\dfrac{10275}{400} $

$ \Rightarrow -\dfrac{2055}{80} $

$ \Rightarrow -\dfrac{411}{16} $


Hence, this is the answer.

The lowest form of $\displaystyle \frac { 30 }{ 60 } $ is -

  1. $\displaystyle \frac { 1 }{ 2 } $

  2. $\displaystyle \frac { 6 }{ 12 } $

  3. $\displaystyle \frac { 15 }{ 30 } $

  4. $\displaystyle \frac { 10 }{ 20 } $


Correct Option: A
Explanation:

lowest form of 30/60 is

30/60=3/6=1/2

Decimal for $79\%$ is  ____ 

  1. $7.9$

  2. $0.79$

  3. $79.00$

  4. $1.79$


Correct Option: B
Explanation:

$79\% = 0.79$ in decimal form. Percent means 'per $100$'. 


So, $79\%$ means $79$ per $100$ or simply $\dfrac{79}{100}$.

If you divide $79$ by $100$, you'll get $0.79$ (a decimal number).

So option B is the correct answer.

$\displaystyle \frac { 20 }{ 25 } = \frac {?} {5} $

  1. $2$

  2. $5$

  3. $4$

  4. $6$


Correct Option: C
Explanation:

$\displaystyle \frac { 20 }{ 25 } =\frac { 20\div 5 }{ 25\div 5 } =\frac { 4 }{ 5 }  $

$\displaystyle \frac{68}{100} = $ ..............%

  1. 0.68

  2. 6.8

  3. 68

  4. 68.01


Correct Option: C
Explanation:

Here, we have to covert fraction in to percentage.

We know that, to covert number into percentage we have to multiply the given number by $100.$
$\Rightarrow$  $\dfrac{68}{100}\times 100=68\%$

$0.97$ is equal to .............$\%$

  1. $9.7$

  2. $9.71$

  3. $97$

  4. $0.97$


Correct Option: C
Explanation:
Multiply both numerator and denominator by $100$ in the given value to find the percentage value.

$\dfrac{0.97×100}{100}=\dfrac{97}{100}= 97\%$

So option C is the correct answer.

The fraction equivalent to $\displaystyle \frac {1} {3} $ is ................

  1. $\displaystyle \frac {3} {9} $

  2. $\displaystyle \frac {5} {15} $

  3. $\displaystyle \frac {6} {18} $

  4. All the above


Correct Option: D
Explanation:

3×3=9 so 3/9=1/3

5×3=15 so 5/15=1/3
6×3=18 so 6/18=1/3
So all the given options are equivalent to 1/3
Option D is the correct answer.

Which number should come in place of $\displaystyle \ \Box, \dfrac { 1 }{ 4 } +\dfrac { 2 }{ 4 } +\dfrac { \Box  }{ 4 } =1\dfrac { 1 }{ 2 } $

  1. $1$

  2. $2$

  3. $3$

  4. $4$


Correct Option: C
Explanation:

$=\displaystyle \frac { 3 }{ 2 } -\frac { 1 }{ 4 } -\frac { 2 }{ 4 }=  \frac { 6-1-2 }{ 4 }= \frac{3} {4} $ 

What is the value of $\dfrac {1}{1 + \sqrt {2} + \sqrt {3}} + \dfrac {1}{1 - \sqrt {2} + \sqrt {3}}$?

  1. $1$

  2. $\sqrt {2}$

  3. $\sqrt {3}$

  4. $2$


Correct Option: A
Explanation:

The value of $\dfrac {1}{(1 + \sqrt {3})+\sqrt {2}} + \dfrac {1}{(1 + \sqrt {3}) - \sqrt {2}}$ is
$=\dfrac {(1 + \sqrt {3} - \sqrt {2}) + (1 + \sqrt {3} + \sqrt {2})}{(1 + \sqrt {3})^{2} - (\sqrt {2})^{2}}$
$= \dfrac {2(1 + \sqrt {3})}{1 + 3 + 2\sqrt {3} - 2}$
$= \dfrac {2(1 + \sqrt {3})}{2(1 + \sqrt {3})} = 1$