Tag: lowest form of fractions

Questions Related to lowest form of fractions

State true or false.
If $5m-n=m+2n$ then the value of $(4m + n) : (4m - n)$ is $2:1$

  1. True

  2. False


Correct Option: A
Explanation:

$ 5m-n=m+2n \$
$ => 4m = 3n \$
$ => \dfrac {m}{n} = \dfrac {3}{4} \$
$ => m : n = 3:4 $

Let $ m = 3a ; n = 4a $


So, $ (4m + n) : (4m - n) = 4(3a) + 4a : 4(3a) -4a $


$ => (4m + n) : (4m - n) = 16a:8a = 2: 1 $

If $2a-5b = 0$ then find the value of  $\displaystyle \frac{a+b}{b}$

  1. $\displaystyle \frac{7}{2}$

  2. $\displaystyle \frac{7}{5}$

  3. $\displaystyle \frac{2}{7}$

  4. $\displaystyle \frac{7}{6}$


Correct Option: A
Explanation:

Given, $ 2a-5b = 0 $
$=>. 2a = 5b $
$ => \frac {a}{b} = \frac {5}{2} $
 
Now, $ \frac {a+b}{b} = \frac {a}{b} + 1 = \frac {5}{2} + 1 = \frac{5+2}{2} = \frac {7}{2} $

If a : b = 7 : 8 and b : c = 12 : 7 then find a : c in the simplest form is 3:2

  1. True

  2. False


Correct Option: A
Explanation:

In the given ratios "b" is

the common term, and the values of b in both ratios are not equal.





To make them equal, find the L.C.M.

of values corresponding to b i.e., $ 8 $ and $ 12 $.





L.C.M. of $ 8  $ and $ 12 = 24 $





Therefore, an equivalent ratio of $ a:b $ such that $ b = 24 $ is $= 7 \times 3:8 \times 3 = 21:24 $





Similarly, an equivalent ratio of $ b:c$ is $ = 12 \times 2 :7 \times 2 = 24:14 $





Therefore,$ a: c = 21:14 $

Dividing by $ 7 $

$ a:c = 3:2 $

Find the value of $\left( \sqrt { 169-144 }  \right) \div \left( \sqrt { 64+36 }  \right) $

  1. 0.5

  2. 0.25

  3. 2.5

  4. 5


Correct Option: A
Explanation:

$\left( \sqrt { 169-144 }  \right) \div \left( \sqrt { 64+36 }  \right) \ =\sqrt { 25 } \div \sqrt { 100 } =5\div 10=\displaystyle\frac { 5 }{ 10 } =0.5$

$\displaystyle \frac {2}{5}\, =\, \displaystyle \frac {?}{15}$

  1. 2

  2. 3

  3. 5

  4. 6


Correct Option: D
Explanation:

$\displaystyle \frac {2}{5}\, =\, \displaystyle \frac {2}{5}\, \times\, \displaystyle \frac {3}{3}\, =\, \displaystyle \frac {6}{15}$

The fraction equivalent to $\displaystyle \frac {1}{2}$ is

  1. $\displaystyle \frac {2}{4}$

  2. $\displaystyle \frac {3}{6}$

  3. $\displaystyle \frac {8}{16}$

  4. All the above


Correct Option: D
Explanation:

$\displaystyle \frac {1}{2}\, =\, \displaystyle \frac {1\, \times\, 2}{2\, \times\, 2}\, =\, \displaystyle \frac {2}{4}$


$\displaystyle \frac {1}{2}\, =\, \displaystyle \frac {1\, \times\, 3}{2\, \times\, 3}\, =\, \displaystyle \frac {3}{6}$

$\displaystyle \frac {1}{2}\, =\, \displaystyle \frac {1\, \times\, 8}{2\, \times\, 8}\, =\, \displaystyle \frac {8}{16}$

So $\displaystyle \frac {1}{2}\, =\, \displaystyle \frac {2}{4}\, =\, \displaystyle \frac {3}{6}\, =\, \displaystyle \frac {8}{16}$

The fraction equivalent to $\displaystyle \frac {1}{2}$ is .......... 

  1. $\displaystyle \frac {3}{6}$

  2. $\displaystyle \frac {5}{10}$

  3. $\displaystyle \frac {9}{8}$

  4. All the above


Correct Option: D
Explanation:

$\displaystyle \frac {1}{2}\, =\, \displaystyle \frac {3}{6}\, =\, \displaystyle \frac {5}{10}\, =\, \displaystyle \frac {9}{18}$

$\displaystyle \frac {15}{45}\, =\, \displaystyle \frac {?}{9}$

  1. 15

  2. 9

  3. 5

  4. 3


Correct Option: D
Explanation:

$\displaystyle \frac {15}{45}\, =\, \displaystyle \frac {15\, \div\, 5}{45\, \div\, 5}\, =\, \displaystyle \frac {3}{9}$

Convert 0.225 in to form p/q

  1. $\displaystyle \frac{3}{10}$

  2. $\displaystyle \frac{9}{40}$

  3. $\displaystyle \frac{9}{50}$

  4. $\displaystyle \frac{9}{400}$


Correct Option: B
Explanation:

${.225}\Rightarrow \frac{225}{1000}=\frac{9}{40}$

$1.\bar{3}$ is equal to

  1. $\displaystyle\frac{3}{4}$

  2. $\displaystyle\frac{2}{3}$

  3. $\displaystyle\frac{4}{3}$

  4. $\displaystyle\frac{2}{5}$


Correct Option: C
Explanation:

$1.\bar{3}$
Let $1.3333...$ be $x$
$1.3333...=x$  {i}
$13.333...=10x$ {ii} [Multiplied by $10$]
                               
$        12  =9x$
$=>x=\frac{12}{9}$
$=>x=\frac{4}{3}$