Tag: comparing fractions

Questions Related to comparing fractions

What is the percentage of least number in the greatest number if $\displaystyle \frac{3}{5},\, \displaystyle \frac{9}{5},\, \displaystyle \frac{1}{5},\, \displaystyle \frac{7}{5}$ are arranged ascending or descending order?

  1. $11\, \displaystyle \frac{1}{9}\, \%$

  2. $10\, \%$

  3. $20\, \%$

  4. $25\, \%$


Correct Option: A
Explanation:

The given numbers can be arranged in the ascending order as $\displaystyle \frac{1}{5}\, <\, \displaystyle \frac{3}{5}\, <\, \displaystyle \frac{7}{5}\, <\, \displaystyle \frac{9}{5}$
Greatest number $=\, \displaystyle \frac{9}{5}$;
Least number $=\, \displaystyle \frac{1}{5}$.
We have, $\displaystyle \frac{9}{5}\, \times\, \displaystyle \frac{x}{100}\, =\, \displaystyle \frac{1}{5}$
$x\, =\, \displaystyle \frac{100}{9}\, =\, 11\, \displaystyle \frac{1}{9}\, \%$

Which of the following statements is true ?

  1. $\displaystyle\frac{-2}{3}\, <\, \frac{4}{-9}\,<\,\frac{-5}{12}\, <\, \frac{7}{-18}$

  2. $\displaystyle\frac{7}{-18}\, <\, \frac{-5}{12}\,<\,\frac{4}{9}\, <\, \frac{-2}{3}$

  3. $\displaystyle\frac{4}{-9}\, <\, \frac{7}{-18}\,<\,\frac{-5}{12}\, <\, \frac{2}{-3}$

  4. $\displaystyle\frac{-5}{12}\, <\, \frac{-2}{3}\,<\,\frac{4}{-9}\, <\, \frac{7}{-18}$


Correct Option: A
Explanation:

This question is very easy if we solve it by verification
process.

Take (A) i.e. $\displaystyle\frac{-2}{3}\,<\,\frac{4}{-9}\, \frac{-5}{12}\, <\,\frac{7}{-18}$

First take \displaystyle\frac{-2}{3},\,\frac{-4}{9}$

$-2\,\times\,9,\, 4\,\times\,3$

-18, -12

$\because\, -12\,>\,-18$

So, $\displaystyle\frac{-4}{9}, \frac{-5}{12}$

$- 4\,\times\, 12, \, - 5\,\times\, 9$

- 48, - 45

$\because\, -45\, >\, -48$

So, $\displaystyle\frac{-5}{12}\,>\, \frac{-4}{9},\,i.e.,\frac{-4}{9}\, <\, \frac{-5}{12}$

Finally, $\displaystyle\frac{-5}{12}, \frac{-7}{18}$

$5\,\times\, 18, \, -7\,\times\, 12$

- 90, - 84

$\because\, -84\, >\, -90$

So, $\displaystyle\frac{-7}{18}\, >\, \frac{-5}{12}, i.e., \frac{-5}{12}\, <\, \frac{-7}{18}$

$\therefore\, \displaystyle\frac{-2}{3}\, <\, \frac{-4}{9}\,<\,  \frac{-5}{12}\,<\, \frac{-7}{18}$

You can identify the answer by observing the question by practicing this method.

The average of the middle two rational numbers if $\displaystyle \frac{4}{7},\, \displaystyle \frac{1}{3},\, \displaystyle \frac{2}{5},\, \displaystyle \frac{5}{9}$ are arranged in ascending order is

  1. $\displaystyle \frac{86}{90}$

  2. $\displaystyle \frac{86}{45}$

  3. $\displaystyle \frac{43}{45}$

  4. $\displaystyle \frac{43}{90}$


Correct Option: D
Explanation:

$\displaystyle \frac{4}{7},\, \displaystyle \frac{1}{3},\, \displaystyle \frac{2}{5},\, \displaystyle \frac{5}{9}$
The above numbers in ascending order are
$\displaystyle \frac{1}{3}\, <\, \displaystyle \frac{2}{5}\, <\, \displaystyle \frac{5}{9}\, <\, \displaystyle \frac{4}{7}$
Middle two numbers are $\displaystyle \frac{2}{5}$ & $\displaystyle \frac{5}{9}$.
$\therefore$ Average = $\displaystyle \frac{\displaystyle \frac{2}{5}\, +\, \displaystyle \frac{5}{9}}{2}\, =\, \displaystyle \frac{43}{90}$.

Out of the rational numbers $\displaystyle\frac{7}{-13},\,\frac{-5}{13},\,\frac{-11}{13}$ which is smaller ?

  1. $\displaystyle \frac{7}{13}$

  2. $\displaystyle \frac{- 5}{13}$

  3. $\displaystyle \frac{- 11}{13}$

  4. None


Correct Option: C
Explanation:

Take any two given rational numbers
$\displaystyle \frac{-7}{13},\, \displaystyle \frac{-5}{13}$
$- 7\, \times\, 13,\, -5\, \times\, 13$
$- 91,\, -65$
$\because\, - 65\, >\, - 91$
So $\displaystyle \frac{-7}{13}$ is smaller.
Now compare this with $\displaystyle \frac{- 11}{13}$
$\displaystyle \frac{- 7}{13},\, \displaystyle \frac{- 11}{13}$
$-7\, \times\, 13,\, - 11\, \times\, 13$
$- 91\, ,\, - 143$
$\because\, - 91\, >\, - 143$
So $\displaystyle \frac{- 11}{13}$ is smaller.

Arrange the following numbers in descending order. $\displaystyle\, -2,\, \frac{4}{-5},\, \frac{-11}{20},\, \frac{3}{4}$ 

  1. $\displaystyle\frac{3}{4}\, >\, -2\, >\, \frac{-11}{20}\, >\, \frac{4}{-5}$

  2. $\displaystyle\frac{3}{4}\, >\, \frac{-11}{20}\, >\, \frac{-4}{5}\, >\,- 2$

  3. $\displaystyle\frac{3}{4}\, >\, \frac{4}{-5}\, >\, -2\,>\, \frac{-11}{20}$

  4. $\displaystyle\frac{3}{4}\, >\, \frac{4}{-5}\, >\, \frac{-11}{20}\, >\, - 2$


Correct Option: B
Explanation:

By verification process, $A\,\rightarrow\, \displaystyle\frac{3}{4},\, \frac{-2}{1}, \, \frac{-11}{20},\, \frac{-4}{5}$

$3\,\times\, 1,\, -2\,\times\, 4$

3, - 8

Correct, $-2\,\times\, 20, \, -11\,\times\, 1$

- 40, - 11

Wrong.

$B\, \rightarrow\, \displaystyle \frac {3}{4},\, \frac{-11}{20}, \frac{-4}{5},\, \frac{-2}{1}$

$3\,\times\, 20, \, -11\,\times\, 4$

60, - 44

$\displaystyle\frac{3}{4}\, >\,\frac{-11}{20}$ $-11\,\times\, 5,\, -4\,\times\, 20$

- 55, - 80

$\because\, \displaystyle\frac{-11}{20}\, >\, \frac{-4}{5}$

$-4\,\times\, 1,\, -2\,\times\, 5$

- 4, - 10

$\because\, \displaystyle\frac{-4}{5}\, >\, -2$

27 > 18 and (-9) is negative.
(Where a = 27, b = 18 , c = -9)  

  1. $\displaystyle \frac { 27 }{ -9 } >\frac { 18 }{ -9 } $

  2. $\displaystyle \frac { -9 }{ 27 } >\frac { -9 }{ 18 } $

  3. $\displaystyle \frac { 27 }{ 9 } >\frac { 18 }{ 9 } $

  4. $\displaystyle \frac { 27 }{ -9 } <\frac { 18 }{ -9 } $


Correct Option: D

Which number is greater than $\displaystyle \frac {1} {4} $?

  1. $0.20$

  2. $0.4$

  3. $0.24$

  4. $0.199$


Correct Option: B
Explanation:

Since $\dfrac {1}{4}=0.25$.


Also,

$0.199<0.20<0.24<0.25<0.4$


Hence, $0.4$ is greater than $\dfrac {1}{4}$.

Equivalent fraction of $\frac {9}{11}$ is

  1. $\frac {99}{88}$

  2. $\frac {234}{286}$

  3. $\frac {72}{77}$

  4. none of these


Correct Option: B

Arrange the following in ascending order:
$\cfrac { 2 }{ 5 } ,\cfrac { 1 }{ 3 } ,\cfrac { 3 }{ 10 } $

  1. $\cfrac { 1 }{ 3 } ,\cfrac { 3 }{ 10 } ,\cfrac { 2 }{ 5 } $

  2. $\cfrac { 3 }{ 10 } ,\cfrac { 2 }{ 5 } ,\cfrac { 1 }{ 3 } $

  3. $\cfrac { 3 }{ 10 } ,\cfrac { 1 }{ 3 } ,\cfrac { 2 }{ 5 } $

  4. $\cfrac { 2 }{ 5 } ,\cfrac { 1 }{ 3 } ,\cfrac { 3 }{ 10 } $


Correct Option: C
Explanation:

Given, 

$\dfrac{2}{5}, \dfrac{1}{3}, \dfrac{3}{10}$

LCM $5, 3, 10$ is $30$
So, 
$\dfrac{2}{5} \times \dfrac{6}{6}$ = $\dfrac{12}{30}$

$\dfrac{1}{3} \times \dfrac{10}{10}$ = $\dfrac{10}{30}$

$\dfrac{3}{10} \times \dfrac{3}{3}$ = $\dfrac{9}{30}$

As we know, $9 < 10 < 12$
So, 
$\dfrac{3}{10} < \dfrac{1}{3} < \dfrac{2}{5}$

Arrange the following in ascending order:
$\cfrac { 5 }{ 8 } ,\cfrac { 5 }{ 6 } ,\cfrac { 1 }{ 2 } $

  1. $\cfrac { 1 }{2 } ,\cfrac { 5 }{ 8 } ,\cfrac { 5 }{ 6 } $

  2. $\cfrac { 5 }{6 } ,\cfrac { 5 }{ 8 } ,\cfrac { 1 }{ 2 } $

  3. $\cfrac { 5 }{8 } ,\cfrac { 1 }{ 2 } ,\cfrac { 5 }{ 6 } $

  4. $\cfrac { 1 }{2 } ,\cfrac { 5 }{ 6 } ,\cfrac { 5 }{ 8 } $


Correct Option: A
Explanation:

Given, 

$\dfrac{5}{8}, \dfrac{5}{6}, \dfrac{1}{2}$

LCM $8, 6, 2$ is $24$

So, 

$\dfrac{5}{8} \times \dfrac{3}{3}$ = $\dfrac{15}{24}$

$\dfrac{5}{6} \times \dfrac{4}{4}$ = $\dfrac{20}{24}$

$\dfrac{1}{2} \times \dfrac{12}{12}$ = $\dfrac{12}{25}$

As we know, $12 < 15 < 20$

So, 

$\dfrac{1}{2} < \dfrac{5}{8} < \dfrac{5}{6}$