Tag: comparing fractions
Questions Related to comparing fractions
A student was asked to solve the fraction $\cfrac { \cfrac { 7 }{ 3 } +\left( 1\cfrac { 1 }{ 2 } \times\cfrac { 5 }{ 3 } \right) }{ 2+1\cfrac { 2 }{ 3 } } $ and his answer was $\cfrac{1}{4}$. By how much was his answer wrong?
-
$1$
-
$\cfrac{1}{55}$
-
$\cfrac{1}{220}$
-
None of these
Which of the following fraction is the smallest? $\dfrac{7}{6}, \dfrac{7}{9}, \dfrac{4}{5}, \dfrac{5}{7}$
-
$\dfrac{7}{6}$
-
$\dfrac{7}{9}$
-
$\dfrac{4}{5}$
-
$\dfrac{5}{7}$
Write the following as fractions in their simplest form.
-
0.4
-
1.5
-
25.75
-
0.072
-
1.248
$0.4=\dfrac 4{10}=\dfrac 25\1.5=\dfrac{15}{10}=\dfrac 32\25.75=\dfrac{2575}{100}=\dfrac{103}{4}\0.072=\dfrac{72}{1000}=\dfrac{9}{125}\1.248=\dfrac{1248}{1000}=\dfrac{156}{125}$
$\dfrac{2}{3}$ is equal to $\dfrac{4}{6}$.
-
True
-
False
Now,
The fraction $\displaystyle \frac{3}{5}$ is found between which pair of fractions on a number line?
-
$\displaystyle \frac{7}{10}$ and $\displaystyle \frac{3}{4}$
-
$\displaystyle \frac{2}{5}$ and $\displaystyle \frac{1}{2}$
-
$\displaystyle \frac{1}{3}$ and $\displaystyle \frac{5}{13}$
-
$\displaystyle \frac{2}{7}$ and $\displaystyle \frac{8}{11}$
(a) Let us consider the first set of fraction $\dfrac { 7 }{ 10 } ,\dfrac { 3 }{ 4 }$ and another given fraction $\dfrac { 3 }{ 5 }$
Which one of the following sets of fractions is in the correct sequence of ascending order of their values ?
-
$\displaystyle -\frac{1}{2},\frac{5}{6},\frac{-4}{9}$
-
$\displaystyle -\frac{3}{7},\frac{-5}{6},\frac{3}{5}$
-
$\displaystyle -\frac{1}{2},-\frac{4}{9},\frac{5}{6}$
-
$\displaystyle -\frac{4}{9},\frac{5}{6},\frac{1}{6}$
(a) Let us consider the first set of fraction $-\dfrac { 1 }{ 2 } ,\dfrac { 5 }{ 6 } ,-\dfrac { 4 }{ 9 }$
Which of the following statements is true ?
-
$\displaystyle {\frac{5}{7}\, <\, \frac{7}{9}\, <\, \frac{9}{11}\, <\, \frac{11}{13}}$
-
$\displaystyle {\frac{11}{13}\, <\, \frac{9}{11}\, <\, \frac{7}{9}\, <\, \frac{5}{7}}$
-
$\displaystyle {\frac{5}{7}\, <\, \frac{11}{13}\, <\, \frac{7}{9}\, <\, \frac{9}{11}}$
-
$\displaystyle {\frac{5}{7}\, <\, \frac{9}{11}\, <\, \frac{11}{13}\, <\, \frac{7}{9}}$
Arrange the following numbers in descending order.
$-2,\, \displaystyle {\frac{4}{-5},\, \frac{-11}{20},\, \frac{3}{4}}$
-
$\displaystyle {\frac{3}{4}\, >\, -2\, >\, \frac{-11}{20}\, >\, \frac{4}{-5}}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{-11}{20}\, >\, \frac{4}{-5}\, >\, -2}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{4}{-5}\, >\, -2\, >\, \frac{-11}{20}}$
-
$\displaystyle {\frac{3}{4}\, >\, \frac{4}{-5}\, >\, \frac{-11}{20}\, >\, -2}$
The rational number $\dfrac {4}{-5}$ is same as $\dfrac {-4}{5}$.
The average of the middle two rational numbers if $\displaystyle {\frac{4}{7},\, \frac{1}{3},\, \frac{2}{5},\, \frac{5}{9}}$ are arranged in ascending order is:
-
$\displaystyle \frac{86}{90}$
-
$\displaystyle \frac{86}{45}$
-
$\displaystyle \frac{43}{45}$
-
$\displaystyle \frac{43}{90}$
$\displaystyle {\frac{4}{7},\, \frac{1}{3},\, \frac{2}{5},\, \frac{5}{9}}$
The above numbers in ascending order are
$\displaystyle {\frac{1}{3}\, <\, \frac{2}{5}\, <\, \frac{5}{9}\, <\, \frac{4}{7}}$
Middle two numbers are $\displaystyle \frac{2}{5}$ and $\displaystyle \frac{5}{9}$
$\therefore$ Average = $\displaystyle {\frac{2/5\, +\, 5/9}{2}\, =\, \frac{43}{90}}$
The given rational numbers are $\displaystyle {\frac{1}{2},\, \frac{4}{-5},\, \frac{-7}{8}}.$ If these numbers are arranged in the ascending order or descending order, then the middle number is:
-
$\displaystyle \frac{1}{2}$
-
$\displaystyle \frac{-7}{8}$
-
$\displaystyle \frac{4}{-5}$
-
None of these
The rational number $\dfrac {4}{-5}$ is same as $\dfrac {-4}{5}$.