Tag: hollow cylinder

Questions Related to hollow cylinder

Mark the correct alternative of the following.
The volume of a cylinder of radius r is $1/4$ of the volume of a rectangular box with a square base of side length x. If the cylinder and the box have equal heights, what is r in terms of x?

  1. $\dfrac{x^2}{2\pi}$

  2. $\dfrac{x}{2\sqrt{\pi}}$

  3. $\dfrac{\sqrt{2x}}{\pi}$

  4. $\dfrac{\pi}{2\sqrt{x}}$


Correct Option: B
Explanation:

Let the height of the cylinder be $h.$

Volume of the cylinder $=\pi r^2 h$
Height of the rectangular box $=h$
Since, base is square with side $x.$
Volume of the box $=x\times x\times h=x^2 h$
According to question,
$\Rightarrow$  $\pi r^2  h=\dfrac{1}{4} x^2 h$

$\Rightarrow$  $r^2=\dfrac{1}{4\pi}x^2$
Taking square root on both sides,
$\Rightarrow$  $r=\dfrac{x}{2\sqrt{\pi}}$

Mark the correct alternative of the following.
Two circular cylinders of equal volume have their heights in the ratio $1:2$. Ratio of their radii is?

  1. $1:\sqrt{2}$

  2. $\sqrt{2}:1$

  3. $1:2$

  4. $1:4$


Correct Option: A
Explanation:
$\dfrac{h _1}{h _2}=\dfrac{1}{2}$        [ Given ]
Let $V _1$ and $V _2$ are volume of cylinders.

$\therefore$  $V _1=V _2$          [ Given ]

$\therefore$  $\dfrac{V _1}{V _2}=1$

$\Rightarrow$  $\dfrac{\pi r _1^2h _1}{\pi r _2^2 h _2}=1$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)=1$

But it is given that,
$\dfrac{h _1}{h _2}=\dfrac{1}{2}$

$\therefore$  $\left(\dfrac{r _1}{r _2}\right)^2\times\dfrac{1}{2}=1$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2=2$

$\Rightarrow$  $\left(\dfrac{r _1}{r _2}\right)^2=\dfrac{2}{1}$

$\Rightarrow$  $\dfrac{r _1}{r _2}=\dfrac{\sqrt{2}}{1}$

$\therefore$  The ratio of the radii of the two cylinders is $\sqrt{2}:1$

Mark the correct alternative of the following.
The altitude of a right circular cylinder is increased six times and the base area is decreased one-ninth of its value. The factor by which the lateral surface of the cylinder increases, is?

  1. $\dfrac{2}{3}$

  2. $\dfrac{1}{2}$

  3. $\dfrac{3}{2}$

  4. $2$


Correct Option: D
Explanation:

Curved surface area of cylinder $=2\pi r h$


Height is increased to $6$ times $=6h$


Base area is decreased to $\left(\dfrac{1}{9}th\right)$ 

i.e. $\pi (r{^{\prime}})^2=\dfrac{1}{9}\pi r^2\Rightarrow r^{\prime}=\dfrac13r $

Now,
New curved surface area $=2\pi\times\dfrac{1}{3}r\times 6h$

                                           $=2\times(2\pi r h)$
$\therefore$  Lateral surface area becomes twice.

Mark the correct alternative of the following.
The height h of a cylinder equal the circumference of the cylinder. In terms of h, what is the volume of the cylinder?

  1. $\dfrac{h^3}{4\pi}$

  2. $\dfrac{h^2}{2\pi}$

  3. $\dfrac{h^3}{2}$

  4. $\pi h^3$


Correct Option: A
Explanation:

Let $h$ be the height of cylinder with radius $r.$

It is given that,
$2\pi r =h$
$\Rightarrow$  $r=\dfrac{h}{2\pi}$
Therefore, the volume of the cylinder is
$V=\pi r^2 h$

$\Rightarrow$  $V=\pi\left(\dfrac{h}{2\pi}\right)^2h$

$\Rightarrow$  $V=\dfrac{h^3}{4\pi}$

Mark the correct alternative of the following.
If the heights of two cones are in the ratio of $1:4$ and the radii of their bases are in the ratio $4:1$, then the ratio of their volumes is?

  1. $1:2$

  2. $2:3$

  3. $3:4$

  4. $4:1$


Correct Option: D
Explanation:

The base radius of cone is $'r'$ and vertical height $'h'$.

$\Rightarrow$  Volume of cone $=\dfrac{1}{3}\pi r^2 h$
Let the base radius and height of the two cones be $r _1,h _1$ and $r _2,h _2$ respectively.
It is given that the ratio between the heights of the two cones is $1:4$.
Since, only the ratio is given, to use them in our equation we introduce a constant $'k'.$
So,
$h _1=1k$
$h _2=4k$
It is also given that, the ratio between the base radius of the two cones is $4:1.$
Since, only the ratio is given, to use then in our equation we introduce another constant $'p'$
So,
$r _1=4p$
$r _2=1p$
Let $V _1$ and $V _2$ be the volumes of cones.

$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{\pi\times 4p\times 4p\times 1k\times 3}{3\times \pi\times 1p\times 1p\times 4k}$

$\therefore$   $\dfrac{V _1}{V _2}=\dfrac{4}{1}$

A hollow cylindrical pipe is $21 \ cm$ long. If its outer and inner diameters are $10 \ cm$ and $6 \ cm$ respectively, them the volume of the metal used in making the pipe is $\displaystyle \left(Take\, \pi\, =\, \frac{22}{7}\right)$

  1. $1048\, cm^{3}$

  2. $1056\, cm^{3}$

  3. $1060\, cm^{3}$

  4. $1064\, cm^{3}$


Correct Option: B
Explanation:

The pipe is in the shape of a hollow cylinder.
Volume of a hollow Cylinder of outer Radius "R", inner Radius ""r" and height "h" $ = \pi ({ R }^{ 2 }-{ r }^{ 2 })h $
Outer Radius $ = \frac {10}{2} = 5  cm $
Inner Radius $ = \frac {6}{2} = 3  cm $
Hence, volume of the pipe $ = \frac { 22 }{ 7 } \times ({ 5 }^{ 2 }-{ 3 }^{ 2 })\times 21 = 1056  {cm}^{3} $

If the volume of a vessel in the form of a right circular cylinder is 448 $\pi\, cm^{3}$ and its height is 7 cm, then the curved surface area of the cylinder is

  1. $224\, \pi\, cm^{2}$

  2. $212\, \pi\, cm^{2}$

  3. $112\, \pi\, cm^{2}$

  4. None of these


Correct Option: C
Explanation:

Volume of a Cylinder of Radius $R$ and height $h$ $ = \pi { R }^{ 2 }h $
$\therefore $ volume of the given cylinder $ =\pi \times {R}^{2} \times 7  = 448 \pi  {cm}^{3} $

$ {R}^{2} = 64 $

$ R = 8 cm $  

Curved surface area of a cylinder of radius "$R$" and height "$h$" $ = 2\pi Rh$

$\therefore$ curved surface area of the given cylinder $ = 2\times \pi \times 8\times 7 =  112 \pi   \  cm^2 $

A hollow iron pipe of $21 cm$ long and its external diameter is $8 cm$. If the thickness of the pipes is $1 cm$ and iron weights $\displaystyle 8g/cm^{2}$, then the weight of the pipe is equal to

  1. $3.6 kg$

  2. $3.696 kg$

  3. $36 kg$

  4. $36.9 kg$


Correct Option: B
Explanation:
Let external diameter be ${ d } _{ 2 }$ and internal be ${ d } _{ 1 }$
$\Rightarrow { d } _{ 2 }=8cm$ & ${ d } _{ 1 }=8-1-1=6cm$
Therefore, ${ r } _{ 1 }=3cm$ & ${ r } _{ 2 }=4cm$
Volume of hollow cylindrical pipe$=\pi \left( { r } _{ 2 }^{ 2 }-{ r } _{ 1 }^{ 2 } \right) \times h$
$=\cfrac { 22 }{ 7 } \left( { \left( 4 \right)  }^{ 2 }-{ \left( 3 \right)  }^{ 2 } \right) \times 21$
$=\cfrac { 22 }{ 7 } \times 7\times 21$
$=462cm^3$
$\therefore $Weight of the pipe$=8\times 462=3696g=3.696kg$

A rectangular sheet of width $14$ m is rolled along its width and is converted to form a cylinder. Find the radius of cylinder.

  1. $\displaystyle \frac { 22 }{ 49 } $

  2. $\displaystyle \frac { 44 }{ 29 } $

  3. $\displaystyle \frac { 49 }{ 22 } $

  4. None


Correct Option: C
Explanation:

Curved surface area of cylinder$=100m^2$

$\therefore 2 \pi r h = 100$
Here, width of the rectangle = height of the cylinder.
$\therefore h=14m$

$\therefore 2 \times \dfrac {22}{7} \times r \times 14 = 100$

$ \therefore r = \dfrac {100 \times 7}{2 \times 22 \times 14}$

In a cylinder, if the radius is halved and height is doubled, the curved surface area will 

  1. remain same

  2. increase

  3. decrease

  4. none of the above


Correct Option: A
Explanation:

Volume of cylinder $\displaystyle \pi { r }^{ 2 }h$
Now, if $\displaystyle r=\frac { r }{ 2 } & h=h2$
New CSA $\displaystyle =2\pi rh$
$\displaystyle =2\pi \left( \frac { r }{ 2 }  \right) \times \left( h\times 2 \right) $
$\displaystyle =2\pi rh$
It will remain same