Tag: hollow cylinder

Questions Related to hollow cylinder

A solid cylinder has a total surface area of $231cm^2$. Its curved surface area. Find the volume of the cylinder?

  1. $270cm^3$

  2. $269.5cm^3$

  3. $256.5cm^3$

  4. $289.5cm^3$


Correct Option: A

Volume of a cylinder when $d=7\ cm$ and $h=3\ cm$

  1. $118\ cm^{3}$

  2. $115.5\ cm^{3}$

  3. $155.5\ cm^{3}$

  4. $808.5\ cm^{3}$


Correct Option: A

A cylindrical pipe is made from a metal sheet of length 88 cm and breadth 20 cm. What is the volume of this pipe?

  1. $2800$ ${ cm }^{ 3 }$

  2. $12320$ ${ cm }^{ 3 }$

  3. $13202$ ${ cm }^{ 3 }$

  4. $13220$ ${ cm }^{ 3 }$


Correct Option: A
Explanation:

We have,

Length $l=88\,cm.$

Breadth$b=20\,cm.$

Volume $=?$

Volume of cylindrical pipe $=\pi {{r}^{2}}h$

We know that,

$ circumfrance=Breadth=2\pi r $

$ 2\pi r=20 $

$ \pi r=10 $

$ r=\dfrac{10}{\pi } $

$ r=\dfrac{10}{\dfrac{22}{7}} $

$ r=\dfrac{70}{22} $

$ r=\dfrac{35}{11}\,\,cm. $

Then,

Volume of cylindrical pipe $V=\pi {{r}^{2}}h$

$ V=\dfrac{22}{7}\times \dfrac{35}{11}\times \dfrac{35}{11}\times 88 $

$ V=2\times 5\times 35\times 8 $

$ V=80\times 35 $

$ V=2800\,c{{m}^{3}} $

Hence, this is the answer.

If sum of radius and height of a cylinder is 6, then its maximum volume is 

  1. $32\pi$

  2. $16\pi$

  3. $8\pi$

  4. None of these


Correct Option: A

Mark the correct alternative of the following.
Two cylindrical jars have their diameters in the ratio $3:1$, but height $1:3$. Then the ratio of their volumes is?

  1. $1:4$

  2. $1:3$

  3. $3:1$

  4. $2:5$


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be the volume of the two cylinders with radius $r _1$ and height $h _1$, and radius $r _2$ and height $h _2.$

$\dfrac{2r _1}{2r _2}=\dfrac{3}{1}$ and $\dfrac{h _1}{h _2}=\dfrac{1}{3}$             [ Given ]
So,
$V _1=\pi r _1^2h _1$           ----- ( 1 )
Now,
$V _2=\pi r _2^2h _2$            ---- ( 2 )
From equation ( 1 ) and ( 2 ), we get
$\dfrac{V _1}{V _2}=\left(\dfrac{r _1}{r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=\left(\dfrac{2r _1}{2r _2}\right)^2\left(\dfrac{h _1}{h _2}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=(3)^2\left(\dfrac{1}{3}\right)$

$\Rightarrow$  $\dfrac{V _1}{V _2}=\dfrac{3}{1}$

Mark the correct alternative of the following.
In a cylinder, if radius is doubled and height is halved, curved surface area will be?

  1. Halved

  2. Doubled

  3. Same

  4. Four times


Correct Option: C
Explanation:

Let the radius of cylinder be $r$ and height be $h.$

So, the original curved surface area $=2\pi rh$
When, radius is doubled and height is halved,
New curved surface area $=2\pi \times 2r\times \dfrac{h}{2}$

                                           $=2\pi r h$
$\therefore$  New curved surface area $=$ Original surface area.
$\therefore$  There is no change in the curved surface area of the cylinder

Mark the correct alternative of the following.
The radius of a wire is decreased to one-third. If volume remains the same, the length will become?

  1. $3$ times

  2. $6$ times

  3. $9$ times

  4. $27$ times


Correct Option: C
Explanation:

Let $V _1$ and $V _2$ be the volume of the two cylinders with $h _1$ and $h _2$ as their heights.

Let $r _1$ and $r _2$ be their base radius.
It is given that, the radius of a wire is decreased to on-third.
$\therefore$  $r _2=\dfrac{1}{3}r _1$

$\Rightarrow$  $V _1=V _2$             [ Given ]
$\Rightarrow$  $\pi r _1^2 h _1=\pi r _2^2 h _2$

$\Rightarrow$  $r _1^2 h _1=\left(\dfrac{1}{3}r _1\right)^2 h _2$

$\Rightarrow$  $r _1^2 h _1=\dfrac{1}{9} r _1^2 h _2$

$\Rightarrow$  $h _2=9h _1$

$\therefore$  The length will become $9$ times.

Mark the correct alternative of the following.
If the height of a cylinder is doubled and radius remains the same, then volume will be?

  1. Doubled

  2. Halved

  3. Same

  4. Four times


Correct Option: A
Explanation:

Let $V _1$ be the volume of the cylinder with radis $r _1$ and height $h _1,$ then

$\Rightarrow$  $V _1=\pi r _1^2 h _1$            ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimension, then
$\Rightarrow$  $r _2=r _1,$  $h _2=2h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2h _2$

$\Rightarrow$  $V _2=\pi\times{r _1}^2\times 2h _1$

$\Rightarrow$  $V _2=2\times \pi r _1^2 h _1$
From ( 1 ),

$\Rightarrow$  $V _2=2V _1$

$\therefore$  If the height of a cylinder is doubled and radius remains the same, then volume will be $Doubled.$

Mark the correct alternative of the following.
In a cylinder, if radius is halved and height is doubled, the volume will be?

  1. Same

  2. Doubled

  3. Halved

  4. Four times


Correct Option: C
Explanation:

Let $V _1$ be the volume of the cylinder with radis $r _1$ and height $h _1,$ then

$\Rightarrow$  $V _1=\pi r _1^2 h _1$            ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimension, then
$\Rightarrow$  $r _2=\dfrac{1}{2}r _1,$  $h _2=2h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2h _2$

$\Rightarrow$  $V _2=\pi\times\left(\dfrac{r _1}{2}\right)^2\times 2h _1$

$\Rightarrow$  $V _2=\dfrac{1}{2}\times \pi r _1^2 h _1$
From ( 1 ),

$\Rightarrow$  $V _2=\dfrac{1}{2}V _1$

$\therefore$  In a cylinder, if radius is halved and height is doubled, the volume will be $Halved$

Mark the correct alternative of the following.
If the radius of a cylinder is doubled and the height remains same, the volume will be?

  1. Doubled

  2. Halved

  3. Same

  4. Four times


Correct Option: D
Explanation:

Let $V _1$ be the volume of the cylinder with radius $r _1$ and height $h _1,$ then

$V _1=\pi r _1^2 h _1$           ---- ( 1 )
Now, let $V _2$ be the volume after changing the dimensions, then
$r _2=2r _1,\,h _2=h _1$
So,
$\Rightarrow$  $V _2=\pi r _2^2 h _2$

$\Rightarrow$  $V _2=\pi\times(2r _1)^2\times h _1$

$\Rightarrow$  $V _2=4\times \pi r _1^2 h _1$
From ( 1 ),
$\therefore$  $V _2=4V _1$
Hence, If the radius of a cylinder is doubled and the height remains same, the volume will be Four times.